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Abstract:  

Mississippian limestone reservoirs are significant unconventional hydrocarbon 
reservoirs in central and northern Oklahoma and southern Kansas that are found at 
relatively shallow depths (3,000-6,000ft; 915-1,825m). Over 14,000 vertical wells have 
been drilled in the “Mississippian Lime” reservoirs, but recent activity has focused on 
developing the reservoir using horizontal drilling methods. Despite historic and recent 
drilling activity, little is understood about the properties and distribution of many of the 
productive Mississippian reservoirs.  

Detailed facies analysis suggests deposition on a regionally extensive, carbonate 
ramp to distally steepened carbonate ramp. Facies stack into shoaling upwards packages 
consisting of glauconitic sandstones and weakly calcareous mudstones to wackestones 
at the base, followed by progressively higher energy, traction-dominated grainstone 
facies. The sequence stratigraphic hierarchy of the “Mississippian Limestone” can be 
defined as an overall 3rd order sequence (100’s of meters thick) containing 4th order 
high frequency sequences (10’s of meters thick) and 5th order cycles (few meters thick), 
which form due to variations in eustatic and relative sea level.  

The stratigraphic hierarchy plays a major role in controlling the overall quality 
and vertical heterogeneity of the reservoir units. Core and thin section analyses 
demonstrate that the “Mississippian Limestone” is characterized mostly by fracture, 
moldic and vug porosity, and that the highest reservoir quality units exist in the higher 
energy, traction current facies. Reservoir quality appears to be mainly controlled by the 
4th order high frequency sequences. Impermeable mudstones and cemented 
grainstones associated with these high frequency sequences likely cause vertical 
compartmentalization of the reservoir. Incorporating a detailed sequence stratigraphic 
framework into the reservoir characterization of the “Mississippian Limestone” provides 
an enhanced understanding of the complex lateral and vertical variability of the 
subsurface reservoir facies, and leads to better reservoir prediction at the exploration 
and production scales. 
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CHAPTER I 
 

 

INTRODUCTION 

 

“MISSISSIPPIAN LIMESTONE” PLAY HISTORY 

Mississippian reservoirs are significant unconventional hydrocarbon reservoirs 

(i.e. - reservoirs characterized by low porosities and/or low permeabilities) in central 

and northern Oklahoma and southern Kansas that have traditionally been developed 

using vertical wells (Figure 1). Fairly recent developments and advancements in 

horizontal drilling and completion techniques have allowed for economic production of 

hydrocarbons from these types of largely uneconomic unconventional reservoirs. The 

“Mississippian Limestone” plays represent a group of plays that have once been 

considered depleted, but have reemerged as a result of lateral drilling and completion 

techniques.  

 Shallow drilling depths (3,000-6,000ft/915-1,825m) and low well costs (approx. 

$3.5 million) makes the “Mississippian Limestone” an appealing unconventional 

prospect. Smaller, independent companies comprise the majority of the “Mississippian 

Limestone” operators in the Mid-Continent. However, the “Mississippian Limestone” 

has also attracted the attention of a few larger international companies. High water-oil 

ratios that can potentially shorten the economic life of a well are problematic in the 
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“Mississippian Limestone” and emphasize the need to establish a sequence stratigraphic 

framework in order to better characterize and predict low water reservoir facies. 

  
 

Figure 1. “Mississippian Limestone” play map showing the distribution of oil (green) and 
gas (red) fields across Oklahoma and Kansas. Thickness of the Mississippian section is 
shown in gray and is contoured in 250ft (76.2m) intervals. The largest Mississippian oil 
field is located in north central Oklahoma, with most of the smaller oil fields occurring to 
the northwest and northeast.  Thickness of the Mississippian section reaches a 
maximum of 2000ft (610m) in western Oklahoma and is not present in southern 
Oklahoma on the Wichita or Ouachita Uplifts. Modified from Harris, 1987. 
 
 

 
SUMMARY OF THE PROBLEM 

The “Mississippian Limestone” is a regionally extensive mixed 

siliciclastic/carbonate unconventional play extending from northern Oklahoma to 

southern Kansas. Unconventional plays such as the “Mississippian Limestone” are 

aerially extensive reservoirs characterized by low porosity and/or permeabilities that 



3 
 

inhibit buoyancy-driven hydrocarbon migration and therefore require stimulation for 

economic exploitation (Roundtree et al., 2010). The “Mississippian Limestone” contains 

several different reservoir types including spiculite, tripolite, chert (“chat”), dolomite, 

mound/build-up, and grainstone facies. Recent advancements in horizontal drilling and 

completion methods have caused industry and academia to reconsider the reservoir 

potential within “Mississippian Limestone”.  Historic production for over 50 years from 

vertical wells has shown that the “Mississippian Limestone” is a viable hydrocarbon 

reservoir, but horizontal drilling has revealed that reservoir units are laterally 

discontinuous and highly unpredictable in the subsurface.  

 Due to the large aerial extent of the “Mississippian Limestone” reservoirs, a wide 

range of carbonate environments and sub-environments are represented within the 

system. Previous studies have mapped the “Mississippian Limestone” across northern 

Oklahoma and southern Kansas using wire-line log datasets, as well as outcrop 

investigations in southwestern Missouri and northwestern Arkansas (Figure 2). Although 

attempts have been made, correlating outcrop observations to the subsurface has 

proven to be difficult. However, previous studies have focused on macro-scale 

variations in lithofacies within the Mississippian and have not clearly defined a sequence 

stratigraphic hierarchy within the Mississippian. Previous work on the Mississippian 

system in the Mid-Continent can be related to sea level fluctuations on the order of one 

to ten million years, but no studies have addressed the effects of higher frequency 

(Milankovitch-band) sea level changes (on the scale of 20,000-400,000 years), which 

control facies, and therefore reservoir, distribution. Incorporating a detailed 
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stratigraphic framework into the reservoir characterization will provide an enhanced 

understanding of the complex lateral and vertical variability of subsurface facies and 

allow for better prediction of reservoir-quality facies in the subsurface. 

 

Figure 2. Map of the Tri-State region (Oklahoma, Arkansas, and Missouri) showing the 
aerial extent of Mississippian outcrops (blue). Deposits become younger to the west and 
south as the Mississippian units dip into the subsurface. Modified from Mazzullo et al., 
2011a. 
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Building upon previous studies, this investigation established a sequence 

stratigraphic framework for a portion of the Mississippian in the Mid-Continent to 

provide an enhanced understanding of the internal 3-D architecture, fabrics, textures, 

and compositions associated with subsurface reservoir, and non-reservoir, facies using 

three representative wells from within the current play area in north-central Oklahoma. 

 

OVERARCHING QUESTIONS AND HYPOTHESIS 

The fundamental hypothesis of this investigation is that the sequence 

stratigraphic hierarchy demonstrated within the “Mississippian Lime” consists of regular 

and predictable sequences and cycles that control the development of reservoir facies 

at various scales. Previous outcrop and subsurface studies do not discuss how meter-

scale variations in internal architecture and composition effect conventional wire-line 

log responses or reservoir development.  

 The overarching questions to be addressed in this investigation are related to 

Mississippian deposits in Logan and Payne Counties in northern Oklahoma (Figure 3). 

The fundamental questions are as follows:  

1. What attributes (i.e. - sedimentary structures, textural fabric, mineralogy, 

and biological constituents) characterize the internal architecture of 

reservoir, and non-reservoir, facies?  
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2. How does the sequence stratigraphic hierarchy control the development 

of reservoir facies?  

3. Can these units be defined using commonly accepted carbonate 

depositional models? 

 

STUDY OBJECTIVES 

The objective of this investigation is to characterize reservoir-scale architectural 

attributes of the “Mississippian Lime” in northern Oklahoma. The primary goals of this 

investigation are to: 1) define the high-resolution sequence stratigraphic framework by 

identifying facies types and examining the vertical stacking patterns of facies using core 

and thin section data from Logan and Payne Counties; and 2) characterize variations in 

reservoir facies (textures, pore systems, porosity, and permeability) in order to establish 

controls on reservoir development. Facies data and identification of key stratigraphic 

surfaces in subsurface cores will allow for an enhanced understanding of the lateral and 

vertical variability of subsurface units. Incorporation of a detailed sequence stratigraphic 

framework into the reservoir characterization of the “Mississippian Lime” will increase 

the predictability of reservoir-quality units in the subsurface and allow for enhanced 

hydrocarbon production.   
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Figure 3. Map of Oklahoma showing the location of the study area and the three wells 
included in this study (green circles). Individual wells are, from west to east, the 
Adkisson #1-33, Winney #1-8, and Elinore #1-18. 
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GEOLOGIC BACKGROUND 

 

STRUCTURAL AND TECTONIC HISTORY 

The study area is located in north central/northeast Oklahoma on the Cherokee 

Platform in Logan and Payne Counties. Structural features bordering the study area are 

the Ozark Uplift and Arkoma Basin to the east and southeast, the Arbuckle Uplift to the 

south, the Anadarko Basin to the southwest and west, and the Nemaha Uplift to the 

west and northwest. Figure 4 illustrates the approximate size and orientation of these 

structural elements in relation to Logan and Payne Counties.  

 

Figure 4. Map of Oklahoma showing the size and orientation of structural features relative 
to the study area (outlined in red). Note the location of the study region on the Cherokee 
Platform, east of the Nemaha Uplift. Blue regions represent depression features relative 
to uplifted regions (brown). Shelf and platform regions are shown in green. Modified from 
Northcutt and Campbell, 1996. 
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During the Early (~359Ma) and Middle Mississippian (~345Ma), the Mid-

Continent was relatively inactive in terms of structural deformation and tectonic 

activity. Mississippian carbonates were deposited across hundreds of square miles 

across portions of Colorado, Nebraska, Kansas, Oklahoma, Arkansas, Missouri, Iowa, and 

Illinois across the ancient Burlington Shelf (Figure 5; Gutschick and Sandberg, 1983; 

Lane, 1978). The depositional strike of the system was roughly east-west, with shallower 

water settings occurring to the north and deeper water settings to the south. The entire 

ramp/shelf system was bounded to the north and northwest by the Transcontinental 

Arch, to the east by the Ozark Uplift in eastern Oklahoma and western Missouri and 

Arkansas, and to the south by the deep water settings of the Anadarko and Arkoma 

Basins in southern Oklahoma (Figures 4 and 5). However, outcrop relationships in 

eastern Oklahoma, southern Missouri, and Northern Arkansas suggest the presence of a 

fore-bulge in this region that created a local back-bulge basin and shelf in central and 

northern Missouri that prevented deposition of early Mississippian sediments to the 

south (Wilhite et al., 2011). 
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Figure 5. Generalized paleo-depositional model of the Mid-Continent representative of 
Early Mississippian time with the study area outlined in red. Mississippian carbonates 
were deposited across hundreds of square miles across portions of Colorado, Nebraska, 
Kansas, Oklahoma, Arkansas, Missouri, Iowa, and Illinois on the ancient Burlington Shelf. 
The system was bounded to the west and north by the Transcontinental Arch, to the 
east by the Ozark Dome, and to the south by the ancestral Anadarko and Arkoma 
Basins. Modified from Lane and DeKyser, 1980. 
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Although there was little tectonic activity during the Early and Middle 

Mississippian, Late Mississippian (~328Ma) and Early Pennsylvanian (~318Ma) tectonism 

associated with the Ouachita Orogeny led to the development of structural and geologic 

features in and around the study area that directly affected the deposition and spatial 

distribution of Late Mississippian carbonates, and the preservation of Early and Middle 

Mississippian carbonates. These structural features include the Wichita Uplift, Arbuckle 

Uplift, and the Ouachita Fold and Thrust Belt, all of which are still currently present.   

The Nemaha Uplift, or Nemaha Ridge, is a north-south trending structural high 

that extends from Kansas into Oklahoma. It is believed to have been active during Late 

Mississippian or Early Pennsylvanian time (Gay, 2003; Gay, 1999). The Nemaha Uplift 

was formed by thrusting that occurred during a regional compressional event, resulting 

in widespread reverse faulting in Nebraska, Kansas, and Oklahoma (Gay, 2003; Gay, 

1999). Faulting associated with the Nemaha Uplift is believed to have affected Late 

Mississippian deposition and likely results in complex distribution of reservoir units 

laterally and vertically (Figure 6). 
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Figure 6. Map showing faulting (blue) associated with the Nemaha Uplift (off-white) in 
central Oklahoma. The study area is outlined in red. Faulting associated with the Nemaha 
Uplift is believed to have affected Late Mississippian deposition and likely results in 
complex distribution of reservoir units laterally and vertically.  Modified from Gay, 2003.  
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PALEOGEOGRAPHY AND CLIMATE 

During Mississippian time, much of the southern United States was covered by 

shallow seas and warm-temperate to subtropical, equatorial climatic conditions existed 

(Curtis and Champlin, 1959; Gutschick and Sandberg, 1983). Northern Oklahoma was 

located approximately 20-30° south of the paleoequator (Figures 7 and 8) (Mazzullo et 

al., 2009a). Paleo-reconstructions of the region during this time indicate that paleo-

winds blew from present day northeast (Mazzullo et al., 2009a).  
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Figure 7. Early Mississippian (345 Ma) paleogeography. The study area (outlined in red 
and denoted by red arrow) is located between 20-30°S of the paleoequator. Water depth 
is indicated by color contrast with light blue indicating shallow water and darker blue 
indicating deeper water. During the Early Mississippian, the study area was characterized 
by shallow-water marine conditions that extended to the northwest, north, and 
northeast, with deeper waters existing to the south-southeast. Paleo-wind direction is 
interpreted to have come from the east-northeast. A number of uplift features (illustrated 
in brown and green) are shown to the northeast of the study area. Geography and wind 
direction at the time of deposition could potentially affect facies distribution across the 
study area. Modified from Blakey (2013). 

 

0 

0 

320 miles 

515 kilometers 



15 
 

 

Figure 8. Late Mississippian (325 Ma) paleogeography. The study area (outlined in red 
and indicated by red arrow) is located between 20-30°S of the paleoequator. Water 
depth is indicated by color contrast with light blue indicating shallow water and darker 
blue indicating deeper water. During the Late Mississippian, the study area was 
characterized by shallow-water marine conditions while deeper waters existed to the 
south-southeast. Paleo-wind direction is interpreted to have come from the east-
northeast. During the Late Mississippian, as opposed to the Early Mississippian, 
significantly more exposed land existed across the Mid-Continent and the extent of 
shallow-water marine conditions to the northwest, north, and northeast of the study 
area is greatly reduced. Geography and wind direction present at the time of deposition 
could potentially affect facies distribution across the study area. Modified from Blakey 
(2013). 
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The Mississippian was a transitional period between greenhouse climactic 

conditions that existed during the Devonian and icehouse climactic conditions that 

existed during the Pennsylvanian (Buggisch et al., 2008; Read, 1995). Isotope ratios 

measured on conodont apatite demonstrate that ocean surface temperatures cooled 

throughout Mississippian time, dropping from approximately 30C during the Early 

Mississippian (Tournasian) to about 15C during the Late Mississippian (Serpukhovian) 

(Buggisch et al., 2008; Haq and Schutter, 2008). This isotope data also suggests that the 

first major Mississippian glaciation event occurred in the Tournasian and persisted 

throughout the Visean (Middle Mississippian), and that a second glaciation event 

occurred in the Serpukhovian (Buggisch et al., 2008). 

 

SEA LEVEL 

Shallow-water marine carbonate systems are fundamentally influenced by water 

depth, therefore the character of the system is in part dependent upon sea level. 

Eustatic and relative sea level changes are controlled by both autogenic (internally 

derived) and allogenic (externally derived) factors including sedimentation rates, 

climate, tectonic activity, and variability in continental ice volumes due to variations in 

the Earth’s orbit (Read, 1995). Glacial cycles are characterized by gradual regressions 

during glaciation and relatively rapid transgressions during de-glaciation (Read, 1995). 

The magnitude of sea level fluctuation is directly related to the volume of continental 

ice. During times characterized by icehouse conditions (i.e. – high volumes of 
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continental ice), sea level fluctuations can be as much as 100m (Read, 1995). However, 

during greenhouse conditions (i.e. – low volumes of continental ice), sea level 

fluctuations are generally less than 10m (Read, 1995). 

 

HIGH FREQUENCY CYCLICITY (FOURTH- AND FIFTH-ORDER) 

This study focuses on the fourth- and fifth-order, or high-frequency cyclicity in 

sea level change related to variability in the Earth’s orbit and axial orientation with 

respect to the sun (Read, 1995). Fourth- and fifth-order high frequency variations in 

eustatic sea level are controlled primarily by Milankovitch Cyclicity. Milankovitch Cycles 

bring about variations in intensity and distribution of solar radiation in the higher 

latitudes, which in turn influences climate and glaciation. Glacio-eustatic changes in sea 

level related to Milankovitch Cycles are caused by: 1) eccentricity, or changes in the 

Earth’s orbital path about the sun (100-400ky cycle) resulting in fourth-order cycles; 2) 

obliquity, or changes in the Earth’s axial tilt in reference to the orbital plane (~40ky 

cycle) resulting in fifth-order cyclicity; and 3) precession, or “wobble” of the Earth’s axial 

orientation (~21ky cycle) resulting in fifth-order cycles (Read, 1995). According to Read 

(1995), obliquity cycles of ~40ky are more important during icehouse times and 

transitional periods from greenhouse to icehouse conditions. 

 

 



18 
 

MISSISSIPPIAN SEA LEVEL 

The Mississippian comprises the upper portion of the Kaskaskia Sequence as 

defined by Sloss (1963), and represents a transitional period from greenhouse 

conditions that existed during the Devonian to icehouse conditions that existed during 

the Pennsylvanian and Permian (Read, 1995) (Figure 9). Long term (first-order) eustatic 

sea level was positioned between 50-100m above present day sea level (Haq and 

Schutter, 2008). The Kinderhookian through Osagean aged strata correspond to the 

Tournasian through Middle Visean Stages representing approximately twenty million 

years (Figure 10). Six to seven 3rd order cycles were identified within this period ranging 

from one to six million years in length (Haq and Schutter, 2008; Ross and Ross, 1988). 

Ross and Ross (1988) identify 14-15 transgressive-regressive cycles throughout the 

entire Mississippian on the order of 1-3 million years. Haq and Schutter (2008) recognize 

21 cycles of similar length within the same time frame and also note anomalously long 

third-order sequences (6 million years) during the Tournasian and Visean Stages (Figure 

10). 

Outcrop studies of the Mississippian across the Mid-Continent region have 

identified key exposure surfaces and sequences of strata indicative of cycles, but have 

not explored their significance in terms of high frequency cyclicity or determined their 

position within the overall sequence stratigraphic hierarchy – both of which play a major 

role in controlling the quality, aerial distribution, and vertical heterogeneity of reservoir 

units.  
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Figure 9. Diagram illustrating icehouse and greenhouse conditions that existed 
throughout the Phanerozoic. Paleo-latitudes of ice-rafted glacial deposits data (gray 
boxes with black outline) and marine ice-rafted deposits data (gray boxes with no 
outline) coupled with climatic change due to variation in CO2 and solar intensity data 
(solid line) indicate that the Mississippian (Lower Carboniferous) represents a 
transitional period from greenhouse conditions that existed during the Devonian to 
icehouse conditions that existed during the Pennsylvanian and Early Permian. Modified 
from Read, 1995.  
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Figure 10. Diagram displaying global sea level and onlap curve for the Carboniferous 
Period. The Mississippian Epoch is highlighted in blue. North American regional stage 
names are usually used in literature when describing the age of Mississippian deposits. 
Length of high-frequency cycles decreases during Middle and Late Mississippian times 
and is possibly related to dominance of icehouse conditions. Modified from Haq and 
Schutter, 2008.  

 

POTENTIAL PROBLEMS IN DELINEATING HIGH FREQUENCY CYCLICITY 

Although there is a direct relationship between sea level fluctuation and the 

response of carbonate sedimentary systems, a number of variables can complicate the 

identification of high frequency cycles. Subsidence, rate of sedimentation, and sediment 

body migration can produce meter-scale packages of rocks similar to those attributed to 

high frequency (fourth- and fifth-order) cycles that are unrelated to changes in eustatic 
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sea level (Cowan and James, 1996; Drummond and Wilkinson, 1993; Rankey, 2002). 

Without understanding the mechanism responsible for the formation of high frequency 

cycles, the hierarchy of cycles can easily be misinterpreted. While both autocyclic and 

allocyclic processes can cloud the signal of sea level fluctuation, an understanding of 

how facies are distributed, how facies migrate within the system, and how tectonic 

activity and subsidence rates affected the system, can aid in the identification of high 

frequency cycles related to sea level change (Drummond and Wilkinson, 1993; Rankey, 

2002). 

 

REGIONAL STRATIGRAPHY 

The term “Mississippian Limestone” is an informal term that refers to all 

Mississippian-aged strata across the Mid-Continent. Although Mississippian strata 

across the Mid-Continent are dominated by carbonate deposits, they can be more 

accurately described as being composed of a mixture of carbonate and siliciclastic rocks. 

Stratigraphy of the Mississippian-aged deposits is not well-defined and is further 

complicated by changes in nomenclature across short distances, and between outcrop 

and subsurface units. Generalized lithostratigraphic columns were designed for each 

state and are used to characterize local outcrop and subsurface strata (Figure 11). 

Modifications to the Mississippian nomenclature have been recently suggested by 

Mazzullo et al. (2013) on the premise that the revised lithostratigraphic nomenclature is 

more useful in correlating strata observed in outcrop to that in the subsurface. A brief 
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description of each state’s generalized lithostratigraphic column is given below as these 

are most commonly used in literature. 

 

 

Figure 11. Stratigraphic columns and associated nomenclature for the Mississippian 
section in northeast Oklahoma, northwest Arkansas, and southwest Missouri. Mazzullo 
et al., 2013 have recently suggested modifications to nomenclature in order to 
standardize group, formation, and member names. Modifications to the nomenclature 
has been suggested on the premise that the revised lithostratigraphic nomenclature is 
more useful in correlating the outcrop to the subsurface. Modified from Mazzullo et al., 
2013.  

 

NORTHEAST OKLAHOMA 

The Mississippian section in northeastern Oklahoma is characterized by 

Kinderhookian- through Meramecian-aged strata (Figure 11). Although not all sources 
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agree, some state that at the base of the Kinderhookian-aged strata there is a thin, 

shaley, siliciclastic-dominated bed present that is correlative to the Bachelor Formation 

(Mazzullo et al., 2013). The Bachelor Formation is often correlated to the Sycamore 

Sandstone (Upper Devonian) due to the presence of reworked Devonian-aged clasts, but 

conodont biostratigraphy indicates that deposition occurred entirely during 

Mississippian time (Manger and Shanks, 1976; Mehl, 1961). Kinderhookian-aged strata 

are composed of, in ascending order, the Compton (also referred to as the St. Joe 

Limestone) and Northview Formations. The base of the overlying Osagean strata is 

represented by the Pierson Formation. The Compton, Northview, and Pierson 

formations comprise what is collectively referred to as the St. Joe Group (Mazzullo et al., 

2013). The remainder of the Osagean strata is composed of the Reeds Spring Formation, 

Keokuk Formation, and, locally, Short Creek Member, which are collectively described as 

the Boone Group (Mazzullo et al., 2013). Meramecian-aged strata in northeast 

Oklahoma is composed of the Warsaw Formation and the Mayes Group (Mazzullo et al., 

2013).  

 

NORTHWEST ARKANSAS  

The Mississippian strata in northwest Arkansas are similar to those in 

northeastern Oklahoma, but does not include the upper units of the Meramecian 

(Figure 11) (Mazzullo et al., 2013). The Kinderhookian-aged strata are defined by the 

Bachelor, Compton, and Northview. The base of the Osagean is represented by the 

Pierson, and the Bachelor, Compton, Northview, and Pierson are collectively referred to 
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as the St. Joe Member or Formation. The rest of the Osagean and the base of the 

Meramecian is referred to as the Lower and Upper Boone Formations respectively. The 

Boone Formation is overlain by the Meramecian-aged Short Creek Member. 

 

SOUTHWEST MISSOURI 

 The Mississippian section in southwest Missouri is the most complete, consisting 

of Kinderhookian- through Chesterian-aged strata (Figure 11) (Mazzullo et al., 2013). 

Here, the Bachelor Formation is not considered part of the St. Joe Group/Formation, 

rather it is a separate formation that exists below the St. Joe. The St. Joe 

Group/Formation consists of the Kinderhookian-aged Compton Limestone, Northview 

Formation, and Baird Mountain Member, and the Osagean-aged Pierson Limestone. The 

rest of the Osagean-aged strata is made up of the Reeds Spring Limestone, Elsey 

Formation, Burlington-Keokuk Limestone, and Short Creek Member. The terms “Boone 

Group” and “Boone Formation” are not recognized in southwest Missouri. Meramecian-

aged strata is represented by the Warsaw Formation, and the Chesterian-aged strata 

consists of the Hindsville and Batesville Formations. 

 

PROPOSED MODIFICATIONS TO MID-CONTINENT MISSISSIPPIAN STRATIGRAPHY 

 Mazzullo et al. (2013) propose a new stratigraphic nomenclature in an attempt 

to resolve current discrepancies (Figure 11). The nomenclature resembles that used in 

each state, but also suggests a few additional names. At the base of the stratigraphic 
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column is the Bachelor Formation, which is not considered to be part of the St. Joe 

Group. The overlying St. Joe Group is composed of the Compton Formation, Northview 

Formation, and the Pierson Formation. The basal unit of the Boone Group is the 

Osagean-aged Reeds Spring Formation. Mazzullo et al. (2013) suggest the names Buffalo 

River tripolite and White River tripolite for two separate tripolite facies present in the 

lower and upper portion of the Reeds Spring Formation respectively. Mazzullo et al. 

(2013) also suggest the name Pineville for the tripolite facies in the uppermost portion 

of the Reeds Spring Formation. Unconformably overlying the Pineville tripolite facies is 

the Bentonville Formation, a newly suggested name for the section that is equivalent to 

the Keokuk Formation, Upper Boone Formation, and Burlington-Keokuk Limestone. The 

top of the Osagean section is capped by the Short Creek Member. Each of the overlying 

formations that make up the Meramecian- and Chesterian-aged portion of the 

stratigraphic column are separated by unconformities, beginning with the Ritchey (top 

of the Boone Group) and St. Louis Formations in the Meramecian, and ending with the 

Chesterian-aged Hindsville and Batesville Formations. 
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DEPOSITIONAL FABRICS/ARCHITECTURE AND INTERPRETATIONS 

 Deposition of the Mississippian carbonates occurred across large portions 

of the United States, including Colorado, Nebraska, Kansas, Oklahoma, Arkansas, 

Missouri, Iowa, and Illinois, as part of a regionally extensive carbonate platform referred 

to as the Burlington Shelf (Figure 12; Gutschick and Sandberg, 1983; Lane, 1978; Lane 

and De Keyser, 1980).  The Burlington Shelf transitioned abruptly into the deep, starved 

Illinois Basin to the north, but demonstrated a gradual transition across Missouri, 

Arkansas, and Oklahoma into the Anadarko Basin and the Ouachita Trough to the south 

(Gutschick and Sandberg, 1983).  

The overall depositional system for the Mississippian is still highly debated. Lane 

(1978) describes the Mississippian sediments as being deposited on a carbonate shelf 

referred to as the Burlington Shelf (Figure 12). Although Gutschick and Sandberg (1983) 

also use shelf terminology to describe Mississippian carbonate deposits across the Mid-

Continent, they state that there is no true definition of a shelf edge. Presently, the 

Mississippian carbonates are believed to have been deposited across Missouri, 

Arkansas, and Oklahoma on a ramp to distally steepened ramp environment, and 

demonstrating aggradational (Early Mississippian/ Kinderhookian) followed by 

progradational (Middle to Late Mississippian/Osagean) geometries (Wilhite et al., 2011). 

This architecture is typically recognized in the subsurface in north-central Oklahoma and 

southern Kansas where the focus of the “Mississippian Limestone” play exists (Wilhite et 

al., 2011). However, based on field observations further east in the outcrop belt, Wilhite 

et al. (2011) have suggested the presence of a fore-bulge region extending from eastern 
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Oklahoma across northern Arkansas and southern Missouri that existed during the Early 

Mississippian and likely affected 1) the extent to which Early to Middle Mississippian 

carbonates were deposited, and 2) the architecture of Middle to Late Mississippian 

deposits in easternmost Oklahoma, southern Missouri, and northern Arkansas. Effects 

of this Early Mississippian fore-bulge region are recognized in the subsurface and can 

cause difficulty when correlating (Wilhite et al., 2011).  

Because the specific time range captured by the cores used in this study is not 

known, a brief summary of all described units within the “Mississippian Limestone” is 

given.  
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Figure 12. Paleo-depositional model of the Mid-Continent representative of the Early 
Mississippian (Tournasian) time. The carbonate system was bounded to the west and 
north by the Transcontinental Arch, to the east by the Ozark Uplift (Dome), and to the 
south by the ancestral Anadarko and Arkoma Basins. Generally speaking, the system 
trends west-east, with shallower water regions existing to the north and deeper water 
settings to the south. Although this paleo-depositional model is the most widely used, it 
is a very generalized static model that represents only a single and grossly generalized 
time slice of a dynamic system. Modified from Gutschick and Sandberg, 1983.  
 

KINDERHOOKIAN 

 Kinderhookian-aged strata are mostly characterized by dark gray to greenish-

gray silty shales and limestones (Jordan and Rowland, 1959). Generally speaking, 

Kinderhookian strata are less cherty than the overlying Osagean-aged strata and are 
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thought to have been deposited on a carbonate ramp or a distally steepened ramp 

(Wilhite et al., 2011). 

 

BACHELOR FORMATION 

The Bachelor Formation is composed of a lower quartzose sandstone with an 

upper green, glauconitic silty shale that is typically less than 2ft (0.6m) thick (Shoeia, 

2012). This formation is not developed in northeastern Oklahoma outcrops.  

The Bachelor Formation is thought to represent the initial flooding phase of the 

Burlington Shelf as evidenced by the presence of glauconite (Evans et al., 2011). The 

presence of sand in the Bachelor Formation is thought to be related to the Ozark Uplift 

in Missouri due to the fact that is forms a circular rim around the Ozark Dome 

(Thompson and Fellows, 1970). 

 

COMPTON FORMATION 

Conodont biostratigraphy demonstrates that the Compton Formation, or St. Joe 

Limestone, conformably overlies the Bachelor Formation (Thompson and Fellows, 

1970). Manger and Shanks (1976) describe the Compton Formation in outcrop in 

northern Arkansas as a light gray, crinoid-bryozoan mudstone to wackestone with 

allochem content decreasing from the base to the top. In addition to the abundance of 

crinoid fragments, Shoeia (2012) also notes the presence of echinoderms, bryozoans, 

and trilobites, all of which can be identified in thin section. Another feature to note 

about the Compton Formation is the existence of asymmetrical in-situ mounds and/or 
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transported talus/slump blocks that range in size from 3-10ft (1-3m) high and 3-33ft (1-

10m) long (Jackson and Evans, 2009; Unrast, 2013). For the most part, these mounds are 

composed of lime mud and contain wispy silt seams (Jackson and Evans, 2009). The 

mound cores are homogeneous, composed of disarticulated brachiopods and crinoids, 

and do not show any internal framework or obvious flank facies (Jackson and Evans, 

2009; Unrast, 2013). Where mounds are present, the thickness of the Compton 

Formation can exceed 50ft (15m) (Huffman, 1960). 

Based on paleogeographic reconstructions by Lane (1978) the Compton 

Formation is thought to have been deposited in a shelf margin environment. Wilhite et 

al. (2011) describe the Compton Formation as a series of aggrading transgressive and 

highstand system tract deposits on a distally steepened ramp. Due to the composition 

and lack of internal framework in their core and flanking facies, the mounds are 

interpreted to be derived from upslope slumping (Jackson and Evans, 2009). 

 

NORTHVIEW FORMATION 

The Northview Formation is generally described as a green-gray shaley limestone 

or laminated calcareous siltstone of wackestone to packstone texture (Kreman, 2011; 

Krueger, 1965; Mazzullo et al., 2009b; Shoeia, 2012). The uppermost bed identified in 

outcrops in Missouri is described as a silty dolomitic packstone that becomes more 

shale-rich to the north and more calcareous to the south (Shoeia, 2012).  The Northview 

Formation has a maximum thickness of 80ft (25m) in southwest Missouri, but thins to 

less than 5ft (1.5m) to the north and south of Springfield, Missouri, and eventually 
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pinches out to the southwest in Cherokee County, Oklahoma (Huffman, 1960; Krueger, 

1965; Shoeia, 2012). Conodont biostratigraphy suggests that the Northview Formation 

was deposited fairly continuously with no significant time breaks (Shoeia, 2012). 

 The Northview is interpreted to represent the transgressive to highstand 

systems tract of a very shallow-water nearshore marine environment, possibly the distal 

portion of a tidal flat (Mazzullo et al., 2011b). Generally speaking the Northview 

Formation is thought to represent deposition on a carbonate ramp from silty shale in a 

landward direction (north/northwest) to calcareous mudstones and wackestones in a 

seaward direction (south/southwest) (Wilhite et al., 2011). 

 

OSAGEAN 

 In general, it is thought that depositional environments during the Osagean, 

from central Kansas southward, occurred on a southward dipping, gently sloping ramp 

toward the Anadarko Basin (Franseen, 2006; Rogers et al., 1996; Wilhite et al., 2011). 

Fluctuations in sea level during this time resulted in basinward progradation of Osagean 

strata (Wilhite et al., 2011). 

  

PIERSON FORMATION 

The Pierson Formation is lithologically similar to the Compton Formation. It 

consists mostly of gray lime packstones and grainstones containing brachiopod molds 

and corals lithified with carbonate mud (Kreman, 2011; Spreng, 1952; Wilhite et al., 

2011). A glauconite interval present at the base of the Pierson Limestone serves as a 
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marker bed that defines the base of the Osage (Heinzelmann, 1964; Krueger, 1965). 

Minor amounts of dark-gray to black, blocky, and opaque chert are present within the 

basal Osagean (Thornton, 1961-1964). Dolomite has been found within the lower 

portion of the Pierson Formation in west-central Missouri (Mazzullo et al., 2011b). 

Similarly to the Compton Formation, the Pierson Formation contains what are 

interpreted by some as carbonate mud mounds. The Pierson Formation has an average 

thickness of 4-18ft (1.2-5.5m), but reaches 30ft (9m) in thickness near the Ozark Uplift 

region (Huffman, 1960; Kreman, 2011; Krueger, 1965; Wilhite et al. 2011). The 

limestones and dolomites of the Pierson Formation are northward dipping and 

erosionally truncated in southern Kansas (Wilhite et al., 2011). Here, the Pierson 

significantly increases in thickness to 75ft (23 meters) and consists of coarse to very 

coarse crinoid grainstones that downlap and prograde northward (Wilhite et al. 2011). 

Wilhite et al. (2011) describe the Pierson Formation as a series of deposits formed on a 

distally steepened ramp.  

 

REEDS SPRING FORMATION 

The Reeds Spring Formation conformably and unconformably overlies the 

Pierson Formation in outcrop and subsurface, and occasionally unconformably overlies 

the Northview Formation or the Woodford Shale (Kreman, 2011; Mazzullo et al., 2011a). 

The contact between the Reeds Spring and the underlying St. Joe Group is characterized 

by a change from grain dominated rocks (St. Joe Group) to mud dominated rocks (Reeds 

Spring) (Kreman, 2011). The Reeds Spring Formation is described as a medium to dark 
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gray, dense, fine crystalline limestone interbedded with thin beds of black to dark gray 

or blue-gray chert in outcrop and the subsurface (Curtis and Champlin, 1959; Huffman, 

1960; Kreman, 2011; Mazzullo et al., 2011a; McFarland, 2004). Small and faint, 

horizontal to sub-horizontal burrows are characteristic of the upper half of the 

formation (Mazzullo et al., 2011a). The chert occurs in laterally continuous and 

discontinuous beds as well as in layers and lenses of anastomosing chert nodules that 

vary in thickness from a few inches to a few feet, and thicken in a basinward 

(south/southwest) direction (Mazzullo et al., 2011b). Narrow, deformed fractures are 

found within gray chert beds, but are commonly filled with white chert (Kreman, 2011; 

Mazzullo et al., 2011a). Branching Thalassinoides burrows can be found at the base of 

some of the chert beds (Mazzullo et al., 2011a). Dolomite is rarely observed in outcrops, 

but can sometimes be seen immediately beneath the unconformity present at the top 

of the Reeds Spring Formation (Mazzullo et al., 2011a). Dolomite has also been 

observed in the subsurface in southern Kansas (Mazzullo et al., 2011a). Total measured 

thickness of the formation in Missouri and Oklahoma outcrops is anywhere from 75-

185ft (23-56m) (Mazzullo et al., 2011a). The Reeds Spring Formation thins southward in 

outcrops and eventually pinches out in northern Sequoyah County, Oklahoma (Huffman, 

1958; Laudon, 1939; Mazzullo et al., 2011a).  

 The overall dark coloring, regionally extensive lithology, thin bedding, organic-

rich nature, and lack of fossils in the Reeds Spring Formation suggests deposition 

occurred on a moderate depth ramp during a maximum sea-level highstand in Osagean 

time (Mazzullo et al., 2011a). Dark gray to black,  shaley lime mudstone has been 



34 
 

identified in cores from northeast Oklahoma, indicative of deepening and pinching out 

depositionally to the south-southwest (Mazzullo et al., 2011a). Because the formation is 

not composed of pelagic skeletal grains, sediment may have been derived from an up-

dip shallow-water carbonate shelf where sediment production and off-bank sediment 

transport were high (Mazzullo et al., 2011a). Based on conodont evidence, the Reeds 

Spring moderate-depth ramp passed up-dip, to the north, into shallow-water, high-

energy crinoidal limestone in the lower part of the Bentonville/Burlington-Keokuk 

Formation (Boardman et al., 2010; Mazzullo et al. 2011a). Deposits of the Reeds Spring 

Formation prograde in a basinward (south/southwest) direction. 

 The top of the Reeds Spring Formation is characterized by an unconformity that 

is locally underlain by 50-60ft (15-18m) of tripolite referred to as the Pineville Tripolite 

(Mazzullo et al., 2011a). The Pineville Tripolite is highly fractured and has high 

microporosity as well as vuggy porosity (Mazzullo et al., 2011a). It can be seen on 

wireline logs as having high porosity and low to moderate resistivity values (Mazzullo et 

al., 2011a). The tripolite is light yellowish-tan in color, non-spiculitic, and common in 

outcrops in southwestern Missouri and northwestern Arkansas (Mazzullo and Wilhite, 

2010; Mazzullo et al., 2011a). It grades downward into unaltered Reeds Spring 

lithologies (Mazzullo et al., 2011a).  

The Pineville Tripolite is considered to be a diagenetic facies, as opposed to a 

depositional facies, and is therefore not indicative any specific environment of 

deposition (Mazzullo et al., 2013; Mazzullo et al., 2011a). The tripolite is believed to be a 
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product of meteoric alteration of preexisting chert present in the Reeds Spring 

Formation (Mazzullo et al., 2011a). 

 

BENTONVILLE FORMATION (BURLINGTON-KEOKUK FORMATION) 

The Bentonville/Burlington-Keokuk Formation is described as a thick to massively 

bedded, crinoid-rich lime packstone to grainstone interbedded with dolomitic 

mudstones and wackestones that unconformably overlie the Reeds Spring Formation 

(Choquette et al., 1992; Huffman, 1960). Crinoids and bryozoans are the most abundant 

fossils in this formation, but brachiopods and corals are also present (Choquette et al., 

1992; Huffman, 1960; Mazzullo et al., 2011b). Thinly bedded green to black shale is 

commonly found in the uppermost part of the formation and typically transitions into 

the overlying Warsaw Formation (Banner and Kaufman, 1994; Choquette et al., 1992). 

Waulsortian-type buildups within the lower part of the Bentonville Formation are 

documented by King (1986) and Huffman (1960). These contain a core facies of 

dolomitized, bryozoan-crinoid lime mudstone and a flank facies of thin-bedded crinoidal 

packstone and grainstone (King, 1986). The flank facies show features such as Bouma 

intervals A and B, scours, flutes, and load casts (King, 1986).  The maximum thickness of 

the Bentonville Formation is approximately 215ft (65.5m) in Missouri and 250ft (76m) in 

the Ozark Region, with average thicknesses ranging from 60-80ft (18-24m). 

 The lower portion of the Bentonville Formation is believed to represent the 

updip, shallower facies of the underlying Reeds Spring Formation (Handford, 2013). 
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Similarly to the Reeds Spring Formation, the Bentonville Formation deposits prograde in 

a basinward direction (Wilhite et al., 2011).  

 

SHORT CREEK MEMBER  

The Short Creek Member is an ooid-rich unit that lies directly above the 

Bentonville/Burlington-Keokuk Formation. The Short Creek Member typically ranges in 

thickness from 1-10ft (0.5-3m) where it is extensively developed, however localized 

thicknesses measuring up to 35ft (10.5m) thick and sporadic lenses measuring up to 25ft 

(7.5m) thick have been documented in northwest Arkansas and northeast Oklahoma 

(Braden and Ausbrooks, 2003; Lisle, 1983; McKnight and Fischer, 1970). The Short Creek 

Member is medium to light brown in color and weathers to a chalky white (McKnight 

and Fischer, 1970). The ooids exist within an opaque whitish matrix and are densely 

packed, mostly rounded, and slightly glauconitic (McKnight and Fischer, 1970).  

The Short Creek Member is interpreted to be deposited in a high energy, 

shallow-water shelf margin environment during a regressive sequence of the Burlington 

Shelf (Greenberg, 1981; Lisle, 1983; Spreng, 1961). High ooid content and cross-bedding 

exist in the southwestern portion of Missouri, indicating deposition of the Short Creek 

Oolite as a marine sand belt or a tidal bar belt near an open shelf (Greenberg, 1981).  

 

MERAMECIAN 

Meramecian-aged strata has not been intensively studied and most reports do 

not distinguish individual units within the Meramecian. Rather, general observations 
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about the section are made. In northern and western Oklahoma, this unit is made up of 

gray-tan, medium to coarse-crystalline limestones that are commonly fossiliferous and 

partly oolitic (Jordan and Rowland, 1959; Thornton, 1961-1964). Chert is also observed 

in the section, but decreases in abundance in north central Oklahoma where calcareous 

siltstones and argillaceous limestones dominate (Jordan and Rowland, 1959; Thornton, 

1961-1964). A glauconitic limestone unit observed in the tri-state district is present at 

the base on the Meramecian (Huffman, 1958; Thornton, 1961-1964). Meramecian strata 

has an average thickness of 240ft (73m) in the Stillwater-Chandler area in Oklahoma, 

but are missing due to pre-Pennsylvanian, or possibly pre-Chesterian, erosion to the 

west and northeast (Heinzelmann, 1964; Thornton, 1961-1964). Extreme differences in 

reported thicknesses are likely a result of complex structural and stratigraphic 

relationships. Although the Salem (Spergen) Limestone is clearly noted to be a separate 

formation within the Meramec section on most stratigraphic charts, detailed 

information regarding the facies, depositional environments or petrographic 

characteristics is rarely to never included in geologic reports of the Mississippian 

stratigraphy. 

Curtis and Champlin (1959) hypothesize that most of the Meramecian deposits 

were deposited above wave base due to the presence of oolites and higher-energy 

deposits such as cross-bedded calcarenites and limestones with well sorted sand or silt 

content. 
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CHESTERIAN 

The thickest section of Chesterian rocks was deposited in the Ardmore basin 

area (Curtis and Champlin, 1959). Chesterian rocks in northern Oklahoma are composed 

of varicolored silty and calcareous shales, and fine to coarse crystalline fossiliferous and 

oolitic limestones (Jordan and Rowland, 1959). In northwestern Oklahoma, sandstone or 

siltstone occur near the bottom of the section (Jordan and Rowland, 1959). In many 

places, the Chester-aged strata are absent, are thought to have either not been 

deposited, or have been removed by post-Mississippian erosion (Curtis and Champlin, 

1959; Mikkelson, 1966; Jordan and Rowland, 1959).  

  

HINDSVILLE FORMATION 

 The lithology of the Hindsville Formation is variable, but can be generally 

described as a gray or light to medium brown, medium-crystalline, thick-bedded oolitic 

and fossiliferous limestone in the Ozark Region and around the Tulsa area (Harris, 1987; 

Heinzelmann, 1964; Huffman, 1960; Krueger, 1965). The oolite content is highly variable 

and locally the ooid-rich limestones may show cross-lamination (Huffman, 1960; 

Krueger, 1965). The base of the formation is marked either by a thin (6in/15cm) zone of 

crushed brachiopod fragments, or a soft, green calcareous shale containing white 

limestone nodules (Heinzelmann, 1964; Huffman, 1960). However, where the Hindsville 

Formation rests unconformably above Osagean-aged chert, a basal conglomerate 

consisting of large, well-rounded pebbles of chert and limestone is typically present 

(Huffman, 1960; Daniels, 2012). Maximum thickness of the Hindsville Formation is 
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approximately 50ft (15m) and occurs in eastern Oklahoma, however, in some areas the 

formation has been removed completely by pre-Pennsylvanian erosion (Huffman, 1960; 

Kreman, 1965).  

 

BATESVILLE FORMATION 

 The Batesville Formation is described as a siliciclastic sandstone and is thought to 

represent the near-shore facies of the underlying Hindsville Formation (Harris, 1987; 

Heinzelmann, 1964; Huffman, 1960; Krueger, 1965). 

 

DATA AND METHODS 

 

SEQUENCE STRATIGRAPHIC ANAYLYSIS 

 For this study, a sequence stratigraphic approach, as opposed to a 

lithostratigraphic approach, was utilized to establish the stratigraphic framework. 

Lithostratigraphy is the branch of stratigraphy that subdivides the rock record according 

to lithology. Lithostratigraphic units are generally time-transgressive and the resulting 

lithostratigraphic interpretations often result in a skewed view of the degree of lateral 

and vertical continuity of facies and may result in arbitrary formation names that may, 

in actuality, be related simply to facies mosaics during the same interval of time. 

Conversely, sequence stratigraphy is the branch of stratigraphy that divides the rock 

record using a succession of depositional sequences composed of genetically-related 

strata (i.e. – strata deposited during a single rise and fall of sea level). As a result, 
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sequence stratigraphy recognizes different facies that coexisted in the overall 

depositional environment during a given period of time. This allows for evaluation of 

depositional systems in a dynamic mode rather than a static one, which helps to explain 

the lateral variability of facies observed within a given system. The major strength of 

sequence stratigraphy is predictability. Sequence stratigraphy allows for the prediction 

of sedimentary packages, including sediment type, probable reservoir, source, or seal 

potential (i.e. – porosity, permeability, or total organic carbon content), geometry, and 

lateral and vertical continuity of strata across a sedimentary basin (Handford and 

Loucks, 1993). The sequence stratigraphic framework for the Mississippian section in 

north-central Oklahoma was established using core, thin section, and wireline log data 

as described in the following sections.  

 

CORE DESCRIPTIONS 

 Describing core is critical for understanding the characteristics of the 

Mississippian section in the subsurface.  Three cores were evaluated for detailed facies 

descriptions and include detailed observations regarding fossil content, sedimentary 

structures (i.e. – bedding, lamination, bioturbation, or burrows) and any visible pore 

types (Table 1). Descriptions of facies textures and pore types utilized the Dunham 

(1962) and Choquette and Pray (1970) classification schemes (Figures 13 and 14). 

Detailed core analysis was performed to 1) identify/confirm facies types, 2) interpret the 

depositional environment(s), 3) determine the effects of high frequency cyclicity on 

facies distribution and reservoir quality, and 4) identify reservoir heterogeneities.  
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Table 1. List of wells that will be used in this investigation including lease name, well 
number, total depth (TD), operator, and county. Well information was taken from well 
log headers. 

 

These three wells were chosen for this study because of their relatively close 

proximity to one another and because each well was cored continuously throughout the 

entire Mississippian section, showing contacts with both the underlying and overlying 

sediments. Cores #1 and #2 are approximately are 11.1 miles (17.8 km) apart and Core 

#2 and Core #3 are 17.4 miles (28.0 km) apart (Figure 3). Studying closely-spaced cores 

allows for better correlation of high frequency sequences and cycles between wells and 

better identification of changes in reservoir facies that may occur across short distances. 

Mississippian cores from the three wells total 656.5ft (200m).  
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Figure 13. Diagram showing the Dunham (1962) classification of carbonate rocks according 
to depositional textures. Modified from Scholle and Ulmer-Scholle, 2003. 
 

 

Figure 14. Diagrammatic representation of the Choquette and Pray (1970) classification 
of fabric selective and non-fabric selective porosity types observed in carbonate rocks. 
Modified from Scholle and Ulmer-Scholle, 2003. 
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PETROGRAPHIC ANALYSIS 

 Petrographic analysis is critical in determining the detailed variations in facies 

that is not visible in hand sample, but that may greatly affect reservoir quality. 

Petrographic analysis focused on three wells and utilized thin-sections that were 

prepared by Weatherford Laboratories and Tulsa Thin Sections. A total of 191 thin 

sections covering 656.5ft (200m) of core were used in this study.  

Petrographic analysis of thin-sections will primarily be used to identify key facies 

types. Thin-sections will allow for proper quantification of grain size using visual 

estimation charts as well as pore types and post-depositional alterations. As with the 

core descriptions, thin section descriptions will also utilize the Dunham (1962) and 

Choquette and Pray (1970) classification schemes (Figures 13 and 14) to describe 

observed textures and pore types. Porosity and permeability values measured by 

Weatherford Laboratories using core plugs are available for the majority of the thin 

sections. Additional thin sections cut for further facies analysis by Tulsa Thin Sections do 

not have laboratory measured porosity and permeability values, and porosity will be 

estimated using standard visual estimation charts.  

These data were critical in identifying the environment of deposition, facies, and 

facies stacking patterns as well as high frequency cyclicity and its effects on reservoir 

quality. Relationships between porosity, permeability, facies, mineralogy, and biological 

constituents were examined in order to identify any patterns between these parameters 

and the sequence stratigraphic hierarchy in order to better understand and predict the 

distribution of reservoir-quality units.   
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X-RAY DIFFRACTION 

 X-ray diffraction (XRD) is an analytical method used to provide a qualitative or 

semi-quantitative estimation of whole rock and clay mineralogy. Core plugs sent to 

Weatherford Laboratories were analyzed using bulk XRD techniques and abundances of 

specific minerals (calcite, dolomite, quartz, and feldspars) were calculated using bulk x-

ray diffraction patterns. A first order approximation of clay minerals was determined 

using bulk x-ray diffractions, however oriented mounts would be necessary for proper 

identification of specific clay minerals. For this study, XRD data were used to estimate 

mineralogy and add to interpretations of lithological variability, depositional cyclicity, 

and depositional setting.  

 

WIRELINE LOGS 

 Wireline logs record physical attributes of a rock formation. These physical 

attributes are used as a proxy to estimate reservoir properties of the rock formation. 

Tool measurements and their relationships to rock characteristics are explained in depth 

by Asquith and Krygowski (2004). Core and thin section interpretations were used to 

ground-truth conventional wireline log data in order to provide a means of identifying 

and correlating high frequency sequences and cycles or facies based on petrophysical 

character.  

 Logs used in this study include caliper logs, gamma-ray logs, density and neutron 

porosity logs, and resistivity logs. Caliper logs measure borehole diameter and can 

indicate washout zones (increased borehole diameter) or permeable zones (decreased 
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borehole diameter due to mudcake build-up). Gamma-ray (GR) logs represent the 

natural radioactivity within a formation and give an indication of the elemental makeup 

of the rock material. The GR log is primarily used to differentiate lithologies and is 

particularly useful in identifying more shale-rich beds. Density logs indicate porosity by 

the measure of electron density in the formation, and neutron logs indicate porosity by 

the measure of hydrogen ion concentration. Together, density-neutron (D-N) porosity 

logs can be used to estimate porosity and identify lithologies and gas-bearing zones.  

Resistivity logs measure how a formation responds to current produced in an adjacent 

formation by electrode or induction tools. The primary use of the shallow, medium, and 

deep resistivity logs is to determine hydrocarbon-bearing versus water-bearing zones. 

 Both total spectral gamma-ray and borehole measured gamma-ray data were 

analyzed in this study to facilitate the correlation of facies, cycles, and sequences both 

vertically and laterally. In this study, spectral gamma-ray values represent laboratory 

measured gamma-ray values. Spectral gamma-ray methods measure the individual 

contributions of potassium, thorium, and uranium to the total amount of gamma-ray 

emission, which allows for a more detailed assessment of gamma-ray values associated 

with a particular unit (Doveton, 1994). Spectral gamma-ray data were analyzed in order 

to 1) identify trends between spectral gamma-ray signatures and sequences, cycles, and 

facies and 2) determine if spectral gamma-ray measurements (which may be obtained 

from outcrop sections) can be correlated to subsurface-measured gamma-ray 

signatures.  
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 The use of wireline logs in combination with core and petrographic analyses can 

help to constrain high frequency sequence and cycle boundaries. Core and thin section 

data were compared to wireline log signatures in order to determine any relationship 

between facies types and wireline log signatures. Tying sequences, cycles, and/or facies 

to wireline log signatures allows for better prediction of reservoir-quality facies away 

from the study area.  

 

DATASET LIMITATIONS 

 The reservoir characterization of the “Mississippian Limestone” in the study is 

limited in that it will integrate data from a set of only three representative wells. 

However, the spatial distribution of reservoir quality units likely exhibits regional and 

local variability between wells. The three wells used in this study are representative of 

the facies distribution within the study area, but may not serve as direct proxies to areas 

outside of the study area.   

Although the contacts with the underlying Devonian-aged Woodford Shale and 

overlying Pennsylvanian-aged section is observed in each core, the exact age of the 

“Mississippian Limestone” in the studied cores is unknown. Determining the age of 

these cores would allow for better correlation to eustatic sea level curves and provide 

an enhanced understanding of the temporal range represented by the Mississippian 

section in the study area. Conodont biostratigraphic analysis, with a maximum 

resolution of one million years, has provided the most precise dataset for correlation in 

the Mississippian. Although conodont biostratigraphy is useful for identifying 3rd order 
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sequences, it cannot define the heterogeneities related to 4th and 5th order sea level 

variations. An idealized facies succession established for the study area was used to 

define high frequency sequence and cycle boundaries that are below the resolution of 

conodont biostratigraphy and, usually, wireline logs. Identifying these high frequency 

sequences and cycles is critical as they generally serve as individual flow and/or 

reservoir units in carbonate systems. These issues are obstacles for true reservoir 

characterization, but are not uncommon problems of reservoir characterization studies. 
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CHAPTER II 
 

  

HIGH RESOLUTION SEQUENCE STRATIGRAPHY AND RESERVOIR CHARACTERIZATION 

OF THE “MISSISSIPPIAN LIMESTONE” IN NORTH-CENTRAL OKLAHOMA 

 

INTRODUCTION 

 Mississippian reservoirs are significant unconventional hydrocarbon reservoirs 

(i.e. - reservoirs characterized by low porosities and/or low permeabilities) in central 

and northern Oklahoma and southern Kansas that have traditionally been developed 

using vertical wells. However, fairly recent developments and advancements in 

horizontal drilling and completion techniques have allowed for economic production of 

hydrocarbons from these reservoirs. Shallow drilling depths (3,000-6,000ft/915-1,825m) 

and low well costs (approx. $3.5 million) makes the “Mississippian Limestone” an 

appealing unconventional prospect. Despite recent drilling efforts and renewed interest 

in the “Mississippian Limestone”, the vertical and lateral heterogeneity of the system is 

still poorly understood. Previous studies of the Mississippian section have not defined 

the control of high frequency sea level fluctuations on facies distribution, which in turn 

controls reservoir heterogeneity.
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The primary goals of this research are to: 1) define the high-resolution sequence 

stratigraphic framework by identifying facies types and examining the vertical stacking 

patterns of facies using core and thin section data from three wells located in Logan and 

Payne Counties, Oklahoma; and 2) characterize variations in reservoir facies (textures, 

pore systems, porosity, and permeability) in order to establish controls on reservoir 

development. Incorporation of a detailed sequence stratigraphic framework into the 

reservoir characterization of the “Mississippian Limestone” increases the predictability 

of reservoir-quality units in the subsurface, allows for an enhanced understanding of 

reservoir and seal geometries and distributions, and ultimately leads to enhanced 

hydrocarbon production. This work not only has direct implications for understanding 

the “Mississippian Limestone” in north-central Oklahoma, but the methodologies 

followed and conclusions determined by this study may also be applied to other ancient 

carbonate systems deposited under similar environmental conditions. 

 

GEOLOGIC SETTING 

 The study area is located in north-central/northeast Oklahoma on the Cherokee 

Platform in Logan and Payne Counties (Figure 15). Mississippian deposition occurred in 

relatively shallow, tropical to subtropical conditions 20-30° south of the paleoequator 

(Curtis and Champlin, 1959; Gutschick and Sandberg, 1983; Witzke, 1990). It is currently 

accepted that deposition occurred on a ramp to distally steepened ramp type 

environment, with strike trending roughly east-west (Mazzullo et al., 2011a). The ramp 
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system was regionally extensive and deposited Mississippian sediments across hundreds 

of square miles in portions of Colorado, Nebraska, Kansas, Oklahoma, Arkansas, 

Missouri, Iowa, and Illinois (Figure 16) (Gutschick and Sandberg, 1983; Lane, 1978). 

Proximal, shallower water conditions were present to the north, and deeper water, 

sediment starved conditions existed to the south (Gutschick and Sandberg, 1983; Lane 

and DeKyser, 1980). The entire ramp system was bounded to the north and northwest 

by the Transcontinental Arch, to the east by the Ozark Uplift, and to the south by the 

deep water settings of the ancestral Anadarko and Arkoma Basins (Lane and DeKyser, 

1980).  

 
Figure 15. Map of Oklahoma showing the location of the study area and the three wells 
included in this study (green circles). Individual wells are, from west to east, the 
Adkisson #1-33, Winney #1-8, and Elinore #1-18. 
 

N 



51 
 

 

Figure 16. Generalized paleo-depositional model of the Mid-Continent representative of 
Early Mississippian time with the study area outline in red. Mississippian carbonates 
were deposited across hundreds of square miles across portions of Colorado, Nebraska, 
Kansas, Oklahoma, Arkansas, Missouri, Iowa, and Illinois on the ancient Burlington Shelf. 
The system was bounded to the west and north by the Transcontinental Arch, to the 
east by the Ozark Dome, and to the south by the ancestral Anadarko and Arkoma 
Basins. Modified from Lane and DeKyser, 1980. 
 

During the Early (359Ma) and Middle Mississippian (345Ma), the Mid-Continent 

was relatively inactive in terms of structural deformation and tectonic activity.  
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However, during Late Mississippian or Early Pennsylvanian time, it is believed that the 

Nemaha Uplift or Nemaha Ridge, a north-south trending structural high extending from 

Kansas into Oklahoma, was active (Gay, 2003; Gay, 1999). Faulting associated with the 

Nemaha Uplift is believed to have affected Mississippian deposition and likely results in 

complex distribution of reservoir units laterally and vertically due to localized changes in 

accommodation related to tectonic movement. 

  

STRATIGRAPHY 

 The term “Mississippian Limestone” is an informal term that refers to all 

Mississippian-aged strata across the Mid-Continent. Throughout the Mid-Continent, the 

Mississippian section unconformably overlies the Devonian-aged Woodford Shale and is 

capped by a regionally extensive, erosional unconformity. Although Mississippian strata 

in the Mid-Continent region are dominated by carbonate deposits, the rocks can be 

more accurately described as being composed of a mixture of carbonates and 

siliciclastics. Stratigraphy of the Mississippian-aged deposits is not well-defined and is 

further complicated by changes in nomenclature across short distances, as well as 

between outcrop and subsurface units. Although the exact stratigraphic range 

represented by the three cores used in this study is not known, the unconformable 

contacts between the Mississippian section and the underlying and overlying formations 

is observed in all three cores and a generalized sequence stratigraphic framework for 

the Mississippian section can still be defined using facies relationships. This sequence 
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stratigraphic framework can be used to explain the lateral and vertical variability 

observed throughout the region.  

 

SEA LEVEL 

The Mississippian represents a transitional period from greenhouse conditions 

that existed during the Devonian, to icehouse conditions that existed during the 

Pennsylvanian and Early Permian (Read, 1995). Long term (first-order) eustatic sea level 

was positioned between 165-328ft (50-100m) above present day sea level (Figure 17) 

(Haq and Schutter, 2008). Although little work has been done to quantify the amplitude 

of sea level fluctuations during the Mississippian, it is likely that amplitudes exceeded 

those typical of greenhouse conditions (5-15m). Even if sea level amplitudes were lower 

than estimated, small eustatic fluctuations experienced on low inclination carbonate 

ramp systems would still likely result in widespread, and geologically rapid, migration of 

facies. Numerous fluctuations in Mississippian sea level of probable 3rd order scale are 

noted on global sea level curves and likely influenced Mississippian deposition across 

the Mid-Continent (Haq and Schutter, 2008; Ross and Ross, 1988).  

Although outcrop studies of the Mississippian across the Mid-Continent region 

have identified key exposure surfaces and sequences of strata indicative of cyclic 

deposition, these studies have not explored their significance in terms of high frequency 

cyclicity or determined their position within the overall sequence stratigraphic hierarchy 

– both of which play a major role in controlling the quality, aerial distribution, and 
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vertical heterogeneity of reservoir units. It is therefore necessary to identify the 

influence of sea level at various scales in order to determine its control on Mississippian 

reservoir development and distribution across the study area.  

 

 

Figure 17. Diagram displaying global sea level and onlap curve for the Carboniferous 
Period. The Mississippian Epoch is highlighted in teal. North American regional stage 
names are usually used in literature when describing the age of Mississippian deposits. 
Length of high-frequency cycles decreases during Middle and Late Mississippian times 
and is possibly related to dominance of icehouse conditions and larger fluctuations in 
seal level, resulting in more distinct cycle boundaries. Modified from Haq and Schutter, 
2008. 
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DATA AND METHODS 

 

CORE DESCRIPTIONS 

  
 Core analysis is critical for understanding the characteristics of the Mississippian 

section in the subsurface as observations made in outcrop tend to differ greatly from 

those made in the subsurface. In order to better understand the Mississippian section in 

north-central Oklahoma, detailed core analysis was performed using three 

representative cores (Table 2) to: 1) identify/confirm facies types, 2) interpret the 

depositional environment(s), 3) determine facies successions and establish a hierarchal 

classification of vertical stacking patterns, 4) determine the effects of high frequency 

cyclicity on facies distribution and reservoir quality, and 5) identify reservoir 

heterogeneities throughout the Mississippian section. Mississippian cores from the 

three wells total 656.5ft (200m). Descriptions of facies textures and pore types utilized 

the Dunham (1962) and Choquette and Pray (1970) classification schemes. Detailed core 

descriptions include observations regarding fossil content, sedimentary structures (i.e. – 

bedding, lamination, bioturbation, or burrows) and any visible pore types.  
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Table 2. List of wells that were used in this investigation including lease name, well 
number, core length, total depth (TD), operator, and county. Well information was 
taken from well log headers. 
 
 

These three cores were selected for this study based upon the following criteria: 

1) relatively close proximity to one another given the available core dataset, 2) 

completeness of cored interval, and 3) availability of conventional wireline log suites 

(i.e. – gamma-ray, caliper, density and neutron porosity, and resistivity logs). Cores #1 

and #2 are approximately are 11.1 miles (17.8km) apart and Core #2 and Core #3 are 

17.4 miles (28.0km) apart (Figure 15). A transect connecting these three cores roughly 

parallels the shelf margin during deposition and illustrates an along-strike or oblique-to-

strike profile. Each of the three wells was cored continuously throughout the entire 

Mississippian section, showing contacts with both the underlying and overlying 

formations. Studying closely-spaced and continuous cores allows for better correlation 

of high frequency sequences and cycles between wells and better identification of 

changes in reservoir facies that may occur across short distances. 

 

PETROGRAPHIC ANALYSIS 

 A detailed understanding of the facies distribution in the subsurface is critical to 

the interpretation of depositional environments and the understanding of facies types 
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and stacking patterns demonstrated within the Mississippian section in north-central 

Oklahoma. Due to the fine-grained nature and microscopic variabilities observed in 

outcrop and subsurface facies, the Mississippian section cannot be accurately described 

using only hand samples. Thin section analysis of the cores used in this study allows for 

more accurate facies descriptions and proper quantification of grain size, and helps to 

determine detailed variations in facies that are key in understanding changes in 

environmental setting due to high frequency sea level fluctuations.  

 In this study, petrographic analysis focuses on three wells with Mississippian cores 

and utilizes 191 thin sections prepared by Weatherford Laboratories and Tulsa Thin 

Sections. All thin sections were alizarin red stained and/or blue epoxy impregnated 

(Figure 18). Thin section locations were chosen based on identifiable changes in the rock 

fabric. As with the core descriptions, thin section descriptions also utilized the Dunham 

(1962) and Choquette and Pray (1970) classification schemes to describe observed 

textures and pore types. Porosity (NCS) and permeability (Klinkenberg) values measured 

by Weatherford Laboratories using core plugs are available for the majority of the thin 

sections. Porosity was estimated using standard visual estimation charts for the remaining 

thin sections. These porosity and permeability data were utilized to determine patterns 

between reservoir development and position within the overall sequence stratigraphic 

framework. 
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Figure 18. Measured sections showing the lengths of each core and the distribution of 
thin sections (rectangles to the right of the measured sections) throughout the 
Mississippian interval. Sample locations were chosen based on identifiable changes in 
the rock fabric. This sample density captures the variability of facies well. 
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X-RAY DIFFRACTION (XRD) 
 
 X-ray diffraction (XRD) is an analytical method used to provide a qualitative or 

semi-quantitative estimation of whole rock and clay mineralogy. Core plugs sent to 

Weatherford Laboratories were analyzed using bulk XRD techniques and abundances of 

specific minerals (calcite, dolomite, quartz, and feldspars) were calculated using bulk x-

ray diffraction patterns. A first order approximation of clay minerals was determined 

using bulk x-ray diffractions, however oriented mounts would be necessary for proper 

identification of specific clay minerals. For this study, XRD data were used to estimate 

mineralogy and add to interpretations of lithological variability, depositional cyclicity, 

and depositional setting.  

 
WIRELINE LOGS 
  
 Core and thin section data were used to ground-truth conventional wireline log 

data in order to provide a means of identifying and correlating sequences based on 

petrophysical character. This is important as core data is not usually readily available 

and, as a result, subsurface correlations are primarily made using wireline logs. Logs 

utilized for each of the three cores used in this study include: 1) gamma-ray (total 

spectral and borehole measured), 2) caliper, 3) density porosity, 4) neutron porosity, 

and 5) shallow, medium, and deep resistivity. The use of wireline logs in combination 

with core and petrographic analyses can serve as a powerful tool that helps to constrain 

the high frequency sequence stratigraphic framework and allow for the correlation of 

high frequency sequence and cycle boundaries into areas where core and thin section 

data may be lacking. 
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FACIES ASSOCIATIONS 

 

Five facies were identified through the analyses of the three cores (656.5ft; 

200m) and defined on the basis of texture, grain types, sedimentary structures, 

environmental indicators, and color. Observations from core descriptions were 

supplemented using 191 thin sections. XRD analyses were integrated to aid in the 

determination of mineralogical abundance within each facies identified. Table 3 

provides a detailed summary of each facies and their characteristics. Colors were 

determined using the GSA rock color designation chart (Table 4) (Goddard et al., 1951). 

Additional core photos and thin section photomicrographs of each facies can be found 

in Appendices C and D.  

 

 

Table 3. Outline of the facies identified in Mississippian cores including the 
sedimentological characteristics, dominant grain constituents, and average total organic 
carbon (TOC) associated with each facies. Key reservoir properties (permeability and 
porosity) are also reported and represent an average calculated using core data from all 
three wells. 

 

The facies are ordered and described in a shallowing/shoaling-upward sequence, 

beginning with what is interpreted to be the deepest or most restricted depositional 
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environment and ending with what is interpreted as the shallowest depositional 

environment. Facies 1 is a glauconitic sandstone facies that is interpreted to represent 

deposition in a moderately anaerobic, or restricted, submarine environment 

characterized by normal salinities, low energy conditions, and low or no sedimentation 

rates. Facies 2 is a mm-scale burrowed calcareous mudstone that is interpreted to 

represent deposition below fair weather wave base in a low-energy and/or restricted 

environment. Facies 3 is a sparsely to completely bioturbated mudstone-wackestone 

that indicates deposition in a low to moderate energy setting where well-circulated, 

normal marine conditions existed. Facies 4 is a peloidal packstone-grainstone facies that 

is interpreted to represent deposition within a moderately high-energy environment 

just below fair weather wave base. Facies 5 is a skeletal grainstone facies representing 

deposition within a high-energy environment and is interpreted to be associated with a 

distal, yet active, portion of a skeletal shoal.  

 Based on the presence of these facies types, it is interpreted that deposition 

occurred on a gently sloping carbonate ramp with facies ranging from muddy, distal 

outer-ramp deposits to high-energy, shallow subtidal deposits in the outermost ramp 

crest environment (Figure 19). 
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Figure 19. Schematic diagram illustrating the interpreted distribution of depositional 
facies and environments for the “Mississippian Limestone” in the studied cores. Facies 
types range from carbonate mudstones deposited in the distal outer ramp environment 
(Facies 1) through peloidal and skeletal grainstones (Facies 4 and 5) deposited in a 
higher-energy, shallow subtidal environment. Modified from Handford, 1986. 
 

FACIES 1: GLAUCONITIC SANDSTONE 

OBSERVATIONS – FACIES 1 

The glauconitic sandstone facies (Figure 20) is a dark greenish gray, grain-

dominated facies composed primarily of well-rounded to sub-rounded, well-sorted, silt-

sized quartz grains (30-60%), rounded to sub-rounded, moderately sorted, sand-sized 

glauconite grains (40-50%), clays (10-20%), and dolomite (0-10%). This facies also 

contains sand-sized phosphate and pyrite grains (5%), sparse thin-shelled brachiopod 

fragments (5%), bone fragments (1-5%), and chert nodules. Facies 1 is characterized by 

good intraparticle and interparticle porosity (average 9.45%) and possesses the highest 

average permeability (0.36 mD). In all cores, the thickness of Facies 1 decreases 
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vertically with each occurrence. Thicknesses range from a maximum of 3.9ft (1.2m) to a 

minimum of 0.2ft (0.06m). The glauconitic sandstone facies is observed in all three 

wells, but only occurs within the lowermost 62.5ft (19m) of Core #1, 21ft (6.4m) of Core 

#2, and 2.5ft (0.76m) of Core #3. 
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Figure 20. Facies 1: Glauconitic Sandstone Facies. A) Core photograph of Facies 1 under 
white light from Core #3 at a depth of 4479.0’. Scale is in centimeters. Facies 1 is dark 
greenish gray in hand sample. In this sample glauconite-rich sand is concentrated in cm-
scale burrows (BU) within a bioturbated matrix. Chert nodule (CH) present. B) Core 
photograph of Facies 1 under white light from Core #1 at a depth of 5817.5’. Scale is in 
centimeters. Visible, very coarse sand-sized pyrite grains (PY) and chert nodules (CH) are 
scattered throughout the sample. C-D) Thin section photomicrograph of Facies 1 in 
plane light from Core #1 at a depth of 5819.8’. The sample is blue epoxy impregnated. 
This sample displays intracrystalline porosity (WX) within dolomite grains (D) and minor 
amounts of interparticle porosity between silt- to very fine sand-sized quartz (Q) and 
glauconite (G) grains. Dead oil can be seen throughout the sample (OIL). E-F) Thin 
section photomicrograph of Facies 1 in plane light from Core #2 at a depth of 5312.75’. 
The sample is blue epoxy impregnated. This sample displays intraparticle (WX) porosity 
(blue) within dolomite crystals (D) and lesser amounts of interparticle porosity between 
quartz (Q) and glauconite (G) grains. Phosphatic bone fragments (BF) and phosphate 
debris (PH) are scattered throughout the sample. 
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INTERPRETATION – FACIES 1 

Glauconite is an authigenic mineral that forms from potassium-rich, iron-poor 

smectite clay (Middleton et al., 2003). Although glauconite can form in a number of 

marine environments, it is most commonly interpreted to indicate deposition within a 

moderately anaerobic, submarine environment extending over a large area 

characterized by normal salinities, low energy conditions, and low or no sedimentation 

rates (Middleton et al., 2003). Glauconite is rarely found in sediments above 60ft (18m) 

or below 2,400ft (730m). Due to the presence of thin-shelled brachiopod fragments it is 

inferred that deposition occurred within a fairly low-energy environment. Although 

conodont fragments are observed in some of these samples, the presence of conodonts 

does not indicate a particular water depth, energy level, or depositional environment 

(Clark, 1984). Based on these observations, Facies 1 is interpreted to represent 

deposition in a restricted, low-energy environment where circulation was limited. 

Because it is only present in the lowermost portions of each core, it is also interpreted 

to represent the initial stages of flooding on a regional scale. 

 

FACIES 2: BURROWED CALCAREOUS MUDSTONE-WACKESTONE 

 

OBSERVATIONS – FACIES 2 

 The burrowed calcareous mudstone facies (Figure 21) is a weakly-laminated 

calcareous mudstone with localized millimeter-scale burrows. Facies 2 possesses a 

characteristic brownish black to grayish black color due to its high clay content (average 
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16%) and has an average TOC (total organic carbon) of 1.49%. This facies is 

characterized by sponge spicules (5-10%) and thin-shelled brachiopod fragments (5%), 

but also contains silt-sized quartz grains (10-50%), pyrite crystals (3%), and occasional 

crinoid beds (average 1 cm thick) visible in hand sample. This facies contains moldic 

pores and has an average porosity of 1.64% and an average permeability of 0.019mD. 

Facies 2 may show either a gradational or sharp bedding contact with overlying and 

underlying facies. The burrowed calcareous mudstone facies is observed in all three 

cores and ranges in thickness from a maximum of 13ft (4m) to a minimum of 0.1ft 

(0.03m).  
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Figure 21. Facies 2: Burrowed Calcareous Mudstone-Wackestone Facies. A) Core 
photograph of Facies 2 under white light from Core #3 at a depth of 4355.5’. Scale is in 
centimeters. Facies 2 is brownish black to grayish black in hand sample. It is thinly 
bedded and, in some instances, crinoid fragments and thin-shelled brachiopods are 
visible in hand sample. B) Thin section photomicrograph of Facies 2 mudstone in plane 
light from Core #1 from 5512.00-5512.25’. Sample is alizarin red stained. Siliceous 
sponge spicules (SP), silt-sized quartz grains (Q), and calcareous grains (pink) are 
scattered throughout a muddy, organic-rich matrix. C) Thin section photomicrograph of 
Facies 2 wackestone in plane light from Core #2 from 5144.0-5144.2’ with abundant silt-
sized quartz grains (Q), brachiopod fragments (BR), and calcareous skeletal fragments 
(SK; crinoid fragments?) and some scattered sponge spicule fragments (SP). XRD: 23% 
clays (1% chlorite, 17% illite, and 5% mixed layer illite/smectite), 18% carbonates (17% 
calcite and 1% dolomite), and 59% other minerals (47% quartz, 2% potassium feldspar, 
5% plagioclase feldspar, 4% pyrite, and 1% apatite).   
 

 

 

Q 

SP 



68 
 

INTERPRETATION – FACIES 2 

 This facies is interpreted to represent outer to distal outer ramp deposition 

below fair weather wave base or deposition in a low-energy, restricted environment 

that represents intermediate environmental conditions between the underlying 

glauconitic sandstone facies and the overlying bioturbated mudstone to wackestone 

facies. Limited abundance and diversity of skeletal grains (sponge spicules and thin-

shelled brachiopods) indicates that conditions were not yet suitable for a diverse, 

normal-marine fauna (Flügel, 2010). Alternations of preserved laminations with 

millimeter-scale burrows suggests fluctuating environmental conditions between 

restricted environmental conditions and oxygen enriched conditions (Ekdale et al., 

1984). Contacts between this facies and the overlying bioturbated facies are gradational 

as the diversity and abundance of skeletal content increases.  
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FACIES 3: BIOTURBATED WACKESTONE-PACKSTONE 

 

OBSERVATIONS – FACIES 3 

 The bioturbated mudstone to wackestone-packstone facies (Figure 22) is a 

sparsely to completely bioturbated facies that contains local, centimeter-scale vertical 

burrows (Cruziana- or Skolithos-type). It contains abundant fine sand-size peloids (30-

40%), and silt-sized quartz grains (average ~40%) and lesser amounts of pyrite grains 

(1.5%), sponge spicules (5%), brachiopods (5%), and crinoid fragments (10%). 

Occasionally sand-sized glauconite grains (1%) are observed. In hand sample, Facies 3 is 

a dusky yellowish brown color. This facies is characterized by moldic pores creating a 

range of porosities (minimum = 0.10%, maximum = 4.75%, and average = 1.57%) and an 

even wider range of permeabilities (minimum = <0.0001mD, maximum = 0.37mD, and 

average = 0.04mD). Contacts between this facies and Facies 2 are generally gradational 

whereas contacts between this facies and Facies 4 or 5 are sharp. The bioturbated 

mudstone to wackestone facies is observed in all three cores and ranges in thickness 

from 0.5ft (0.15m) to 39ft (11.9m).  
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Figure 22. Facies 3: Bioturbated Wackestone to Packstone Facies. A) Core photograph of 
Facies 3 under white light from Core #1 at a depth of 5799.6’. Scale is in centimeters. 
Facies 3 is dusky yellowish brown and dark yellowish brown in this hand sample and is 
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heavily bioturbated showing cm-scale burrows (BU) filled with grainier sediment than 
surrounding material. B) Core photograph of Facies 3 under white light from Core #1 at 
a depth of 5748.8’. This sample is moderately bioturbated and captures a long vertical 
burrow (BU) representing the proximal expression of the Cruziana ichnofacies or the 
distal expression of the Skolithos facies (MacEachern et al., 2009).  C-D) Thin section 
photomicrograph of Facies 3 in plane light from Core #1 at a depth of 5596.8’ at 2X (C) 
and 5X (D). Sample is alizarin red stained. Mud wisps (MW) can be seen throughout 
grain-rich sample composed dominantly of silt-sized quartz (Q) grains and crinoid 
fragments (CR). XRD: 15% clays (1% chlorite, 9% illite, and 5% mixed layer 
illite/smectite), 39% carbonates (32% calcite and 4% dolomite), and 49% other minerals 
(41% quartz, 1% potassium feldspar, 3% plagioclase feldspar, 2% pyrite, 1% apatite, and 
1% marcasite). E) Thin section photomicrograph of Facies 3 in plane light from Core #1 
at a depth of 5526.05’. Sample is alizarin red stained. Sample is heavily bioturbated and 
ranges from mud-supported (M) near the base to grain-supported at the top. Large (1-2 
mm) crinoid fragments (CR) are scattered throughout. XRD: 4% clays (3% illite and 1% 
mixed layer illite/smectite), 49% carbonates (45% calcite and 4% dolomite), and 47% 
other minerals (42% quartz, 1% potassium feldspar, 3% plagioclase feldspar, and 1% 
pyrite). 
 

INTERPRETATION – FACIES 3 

 Facies 3 is interpreted as mid- to outer-ramp sediments deposited under low to 

moderate energy settings. Well-circulated, normal marine conditions during deposition 

are indicated by the presence of more diverse skeletal material (brachiopod and crinoid 

fragments), an overall high degree of bioturbation, and the presence of vertical burrows 

resembling proximal expressions of the Cruziana ichnofacies or distal expressions of the 

Skolithos ichnofacies (MacEachern et al., 2009). The presence of these ichnofacies 

suggests that clean, silty and muddy sand substrates existed during the time of 

deposition (MacEachern et al., 2009).  
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FACIES 4: PELOIDAL PACKSTONE-GRAINSTONE 
 
 

OBSERVATIONS – FACIES 4 

 The peloidal packstone to grainstone facies (Figure 23) is an olive gray, grain-

dominated facies characterized by abundant fine sand-sized peloids (~50%), silt- to fine 

sand-sized quartz grains (~35%), and skeletal debris (~15%). Some thin sections show a 

mottled texture. The skeletal debris is composed of crinoid, brachiopod, and lesser 

amounts of bryozoan fragments. Significant amounts (>50% abundance) of quartz is 

present in some samples. In core, Facies 4 is massive-bedded and is commonly 

interbedded with skeletal grainstones (Facies 5). Facies 4 demonstrates mainly fracture 

porosity and some solution-enhanced moldic porosity. Facies 4 has an average porosity 

of 1.4% and an average permeability of 0.003mD. Contacts between this facies and the 

underlying and overlying facies are generally sharp. Facies 4 is observed in all three 

cores and ranges in thickness from 0.1ft (0.03m) to 6ft (1.8m). 
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Figure 23. Facies 4: Peloidal Packstone to Grainstone Facies. A) Core photograph of Facies 4 in 
white light from Core #3 at a depth of 4384.0’. Scale is in centimeters. Facies 4 is olive gray in 
color and is characterized by massive bedding. B) Thin section photomicrograph of Facies 4 in 
plane light from Core #2 at a depth of 5219.75’. Sample is alizarin red stained. Composed of fine 
sand-sized peloids (P), brachiopod (BR) and crinoid (CR) fragments, sponge spicules (SP), and silt-
sized quartz grains (Q). XRD: 1% clays (1% illite), 75% carbonates (74% quartz and 1% dolomite), 
and 24% other minerals (21% quartz, 1% potassium feldspar, and 2% plagioclase feldspar). C) 
Thin section photomicrograph of Facies 4 in plane light from Core #2 at a depth of 5149.8’. 
Composed of peloids (P), crinoid (CR) fragments, and silt-sized quartz grains (Q). XRD: 2% clays 
(1% illite and 1% mixed layer illite/smectite), 62% carbonates (59% calcite and 3% dolomite), 
and 36% other minerals (26% quartz, 2% potassium feldspar, 6% plagioclase feldspar, 1% pyrite, 
and 1% apatite).  
 

INTERPRETATION – FACIES 4 

 The peloidal packstone to grainstone facies is interpreted to represent deposition within 

the mid-ramp or more distal portion of the ramp crest environment near fair weather wave 

base, proximal to skeletal shoals. The presence of more diverse skeletal material (brachiopods, 
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crinoids, and bryozoans) suggest that well-circulated, fairly normal marine conditions existed 

during deposition, and the mottled texture observed in thin section is indicative of bioturbation 

(Dodd and Stanton, 1981). These observations suggest that Facies 4 is a distal expression of the 

inactive portion of a skeletal shoal.  

 

FACIES 5: SKELETAL PACKSTONE-GRAINSTONE  
 
 

OBSERVATIONS – FACIES 5 
 
 The skeletal grainstone facies (Figure 24) is characterized by skeletal debris consisting of 

brachiopod, crinoid, and bryozoan fragments as well as sponge spicules. The skeletal grains are 

typically disarticulated and range in size from very fine sand to medium-sand size. Facies 5 is 

variable in color, ranging from medium and dark grays to a dark yellowish brown. Intermittent 

muddy intervals, burrowed firmgrounds, bioturbated intervals, or shell beds are occasionally 

observed (0.5in or 1.27cm thick). Quartz abundance is highly variable and significant amounts 

(>50% abundance) of subrounded to well-rounded silt-sized quartz grains are present in some 

samples. In core, cross-bedding, occasional hummocky and swaley cross stratification, and 

inclined bedding planes are commonly observed. Facies 5 is characterized by sharp basal 

contacts, but no direct evidence of scour was observed. The dominant pore types observed in 

thin section are solution-enhanced molds and vugs, with lesser amounts of fracture porosity 

observed. Facies 5 possesses the second highest average porosity (3.3%) and permeability 

(0.049mD). Under ultraviolet lighting, the grainstone intervals commonly show bright yellow or 

light blue fluorescence. The skeletal grainstone facies is observed in all three cores and ranges in 

thickness from 0.3ft (0.09m) to 12.2ft (3.7m).  
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Figure 24. Facies 5: Skeletal Grainstone Facies. A) Core photograph of Facies 5 in white 
light from Core #3 at a depth of 4419’. Facies 5 is highly variable in color and contains 
interbedded intervals of dusky yellowish brown, dark yellowish brown, medium gray, olive 
gray, and light olive gray packstones and grainstones with intermittent brownish black 
muddy intervals. Sample is oil stained (yellowish brown tint). Traction current features 
showing truncation surfaces (TR) are commonly observed. Fractures (FR) and fracture 
swarms (FS) are commonly observed Facies 5 and usually terminate into thin, intermittent 
mud-rich intervals. B) Core photograph of Facies 5 in white light from Core #1 at a depth of 
5620.1’. Hummocky cross stratification, traced in yellow, is occasionally observed within 
Facies 5 indicating storms sporadically influenced deposition. C) Thin section 
photomicrograph of Facies 5 in plane light from Core #1 at a depth of 5507.9’. Composed 
dominantly of crinoid (CR) and brachiopod (BR) fragments. Intraparticle porosity (WP) 
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observed within crinoid and brachiopod fragments and moldic porosity observed from the 
dissolution of sponge spicules. XRD: 1% clays (1% illite), 54% carbonates (47% calcite and 
7% dolomite), and 45% other minerals (42% quartz, 1% potassium feldspar, and 2% 
plagioclase feldspar). 
 

INTERPRETATION – FACIES 5 

 This facies is interpreted to represent deposition within the mid-ramp or more 

distal portion of the ramp crest environment near fair weather wave base. The presence 

of cross bedding and truncation surfaces suggests that these skeletal grainstones may 

have been deposited in the active portion of a skeletal shoal. However, the overall small 

grain size (silt to medium sand-size) and intermittent mud-rich intervals suggest that this 

facies may represent a more distal expression of the active portion of a skeletal shoal 

complex. The presence of hummocky cross-stratification indicates that deposition was 

occasionally influenced by storm processes (Middleton et al., 2003). Fluorescence under 

ultraviolet lighting indicates the presence of hydrocarbons in many of these deposits.   
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SEQUENCE STRATIGRAPHIC FRAMEWORK 

 

IDEALIZED FACIES SUCCESSION 

The sequence stratigraphic framework for the Mississippian section in north-

central Oklahoma was determined using the idealized vertical stacking pattern of facies 

developed using facies data from three subsurface cores as described in the previous 

section. The idealized facies succession established for the study area exhibits a 

shoaling- or shallowing-upwards profile consisting of a transgressive and regressive 

phase (Figure 25). This idealized facies stacking pattern was used to understand the 

controls on the variability of facies and to identify a hierarchy of depositional sequences 

and cycles. Once the vertical variability of facies was constrained, sequence and cycle 

boundaries were correlated laterally between the three cores used in this study.  

 

Figure 25. Idealized shallowing-upward facies succession established for the 
“Mississippian Limestone” section for the study area in north-central Oklahoma. The 
blue triangle represents the transgressive phase of the system and the red triangle 
represents the regressive phase. Deviations in the idealized facies stacking pattern may 
occur as a result of autocyclic processes.   
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SEQUENCE STRATIGRAPHIC HIERARCHY 

 The three cores analyzed in this study demonstrate at least three levels of 

sequence stratigraphic hierarchy. It is important to note that the sequences are not yet 

constrained by biostratigraphy and that characterization of 3rd, 4th, and 5th order 

cyclicity in this study is meant to illustrate the relative increase in the frequency of 

cycles and the hierarchy of the stratigraphic architecture, without assuming any specific 

time interval or duration. Integrating conodont biostratigraphic analyses, with a 

maximum resolution of one million years, would be useful in defining 3rd order 

sequences, but cannot define the heterogeneities related to 4th and 5th order high 

frequency sequences and cycles. 

 

THIRD-ORDER SEQUENCES 

A larger-scale (interpreted as 3rd order) sequence is represented by the entire 

cored interval. This overall shallowing-upward sequence is characterized by a general 

change in facies from deeper-water, lower-energy facies at the base, to shallow-water, 

higher-energy facies at the top. This trend is consistent with global sea level curves that 

show a gradual falling of sea throughout the Mississippian (Haq and Schutter, 2008). 

 

HIGH FREQUENCY FOURTH-ORDER SEQUENCES 

Each of the cores in this study exhibit four regionally correlative sequences of 

probable 4th order duration. These 4th order sequences display a well-defined shoaling 

upwards succession of depositional facies and are bounded at their bases by deeper-
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water, transgressive facies (Facies 1, 2, or 3), and at their top by higher-energy, 

regressive facies (Facies 4 or 5). Observed 4th order sequences range in thickness from 

approximately 25ft (7.5m) to 115ft (35m). All four high frequency sequences are thickest 

in Core #1 and show some degree of thinning in an eastward direction, with the 

lowermost (S1) and uppermost (S4) sequences experiencing the most drastic changes in 

thickness. These thickness variations are likely related to the locations of the cores 

relative to the Nemaha Uplift and associated faults which likely created or reduced 

accommodation locally. Identification of these high frequency sequences is important as 

they likely control the distribution of reservoir-quality units (Grammer et al., 2004). 

 

HIGH FREQUENCY FIFTH-ORDER CYCLES 

High frequency 5th order cycles are the thinnest cycles identified in core and, 

generally speaking, and in this study, are an average of 10ft (3m) thick. Identification of 

these units is important as they often represent the fundamental reservoir flow units in 

many carbonate reservoirs (Grammer et al., 2004). However, the lack of high-resolution 

biostratigraphy, spacing of cores, and the uncertainty as to the controlling mechanism(s) 

at the 5th order scale makes these high frequency cycles the most problematic for 

regional correlation.  

High frequency cycles were identified following the idealized vertical succession 

of facies and commonly consist of alternating mudstone to wackestone facies (Facies 2 

and 3) and peloidal or skeletal packstone to grainstone facies (Facies 4 and 5). The 

distribution of the high frequency cycles lacks the regional consistency and correlativity 
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observed in the 4th order high frequency sequences, and the number of high frequency 

cycles varies both within and between each of the identified 4th order sequences. The 

inconsistencies in these cycles are likely related to high frequency sea level fluctuations 

and/or variations in accommodation (Eberli et al., 2004). The lateral continuity and 

thickness variations of these cycles are a function of carbonate production rates and the 

rate of sea level rise (Eberli et al., 2004). Although these 5th order cycles cannot be 

correlated across the study area, it is still important to identify these cycles as they 

provide insight and an enhanced predictability of sedimentary packages, probable 

reservoir or source potential, geometry, and the lateral and vertical continuity of 

sedimentary packages in the subsurface.   
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Figure 26. West to east cross section of depositional facies and 3rd, 4th, and 5th order 
sequences and cycles identified in core. Refer to Figure 23 for facies names. This cross 
section illustrates the regional continuity and eastward thinning of the 3rd order 
sequence and 4th order high frequency sequences (S1-S4). Regional variations in 
thickness suggests an influence of eustatic sea level changes and possible autocyclic 
processes. Thickness variations of S1 and S4 may be related to the unconformable 
surfaces above and below the Mississippian section. 5th order high-frequency cycles are 
regionally discontinuous and may be greatly influenced by autocyclic processes.   
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WIRELINE LOG CORRELATION 

In order to correlate sequences and cycles laterally across the study area, a 

number of different datasets were used. Facies, cycles, and sequences were compared 

to available core data and wireline log signatures to determine any vertically and/or 

laterally repeating patterns that may facilitate facies, cycle, or sequence correlation 

within and beyond the study area. 

 

WHOLE ROCK MINERALOGY/XRD 

 Whole rock mineralogy was determined for core plug samples analyzed by 

Weatherford Laboratories using bulk x-ray diffraction techniques. 169 samples from the 

three cores used in this study have associated XRD data. Petrophysicists at Devon 

Energy utilized XRD data from these samples to generate gross mineralogy curves that 

interpolate between measured samples. These curves were developed to illustrate the 

relative abundance of quartz, calcite, dolomite, and total clays throughout each core.  

These curves where plotted adjacent to measured sections to infer general trends 

between mineralogy and high frequency sequences and cycles (Figure 27). XRD data 

associated with specific thin sections were used to analyze relationships between 

mineralogy and facies.  

 It was predicted that a correlation between the volume of quartz silt and 

transgressive/regressive phases existed. It was expected that the amount of silt-sized 

quartz grains would be highest during the latest regressive phase or earliest 

transgressive phase. However, the volume of quartz is highly variable throughout the 
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observed sequences and cycles and there is no apparent trend between gross 

mineralogy and position within the sequence stratigraphic framework. Although there is 

a variable amount of quartz silt observed within each facies, generally speaking, Facies 4 

contains the least amount of quartz silt (average 32%), Facies 1 and 5 contain the 

greatest amounts (average 48% and 43% respectively), and Facies 2 and 3 contain 

intermediate amounts (40% and 37% respectively). Thin section analysis reveals that 

some intervals of Facies 5 are completely silicified due to diagenetic processes. These 

samples show anomalously high volumes of quartz that are related to diagenetic 

processes, not specific depositional processes, that skew the dataset making 

interpretations between quartz abundance and the sequence stratigraphic framework 

difficult to determine.  

Although oriented mounts were not prepared for more accurate determination 

of clay mineralogy, Weatherford Laboratories reports significant volumes (trace 

amounts to 15%) of illite throughout the section and lesser amounts of mixed-layer 

illite/smectite (trace amounts to 7%). The presence, or absence, of these clays may be 

important in terms of reservoir development and production as some clays (i.e. – 

smectite) are swelling clays that absorb drilling fluids and proppants that can result in 

the occlusion of porosity or inability to utilize hydraulic fracturing techniques within the 

interval of interest. A more detailed determination of clay minerals present throughout 

the section would be useful for identifying more desirable reservoir intervals. 
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Figure 27. West to east cross section of depositional facies, 3rd, 4th, and 5th order 
sequences and cycles, whole rock mineralogy, and spectral (laboratory measured) 
gamma-ray. Refer to Figure 23 for facies names and color associations. Whole rock 
mineralogy curves are displayed on the center track. Quartz is represented by the yellow 
curve, calcium carbonate by the blue curve, dolomite by the purple, and total clays by 
the gray. There is no obvious correlation between gross mineralogy and the sequence 
stratigraphic framework. Spectral gamma-ray is plotted on the far right track. 4th order 
high frequency sequences appear to correlate well with spectral gamma-ray signatures, 
with the base of the 4th order sequences corresponding to pronounced spikes in spectral 
gamma-ray values. Although some 5th order high frequency cycle boundaries 
occasionally correspond to slight increases in spectral gamma-ray readings, the trend is 
highly inconsistent.  
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GAMMA-RAY 

 Both total spectral gamma-ray and borehole measured gamma-ray data were 

analyzed in this study to facilitate the correlation of facies, cycles, and sequences 

vertically and laterally. Overall, there is a good correlation between high frequency 4th 

order sequences and spectral and borehole-measured gamma-ray values. 

 Fourth-order sequence boundaries correlate well with spikes in total spectral 

gamma-ray signatures (Figure 25 and 26). However, high frequency 5th order cycles do 

not consistently correlate to spectral gamma-ray signatures. A similar trend is observed 

with borehole-measured gamma-ray values where 4th order sequence boundaries 

correlate to peaks in gamma-ray signatures, but 5th order cycles are below the 

resolution of the tool. The four 4th order high frequency sequences resolvable on 

wireline logs can be regionally correlated using spectral or borehole-measured gamma-

ray  characterized by elevated values at the base of the sequences (transgressive phase) 

and show an overall decreasing upward trend towards the top of the sequence 

(regressive phase).  

 Although 4th order high frequency sequences are readily identifiable on gamma-

ray curves and 5th order high frequency cycles are occasionally visible, correlations 

based on gamma-ray signatures alone cannot be used blindly to define and correlate 

facies, cycle, and sequence boundaries. This practice will likely result in erroneous 

correlations. For example, the gamma-ray signature of the upper half of sequence one 

shows multiple spikes that are not associated with 4th order high frequency sequences 

(Figure 27 and 28). Correlation of these spikes could result in an erroneous sequence 
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stratigraphic correlation and an erroneous assumption that reservoir-quality packstone-

grainstone facies exist at the tops of these sequences.     

 

DENSITY AND NEUTRON POROSITY 

 Both density and neutron porosity logs were used to determine a relationship 

between high frequency sequences and cycles and units characterized by reservoir-

quality porosity. Density and neutron porosity logs for each core were plotted using a 

limestone matrix (Figure 28). However, using a limestone matrix to calibrate density-

neutron porosity throughout the Mississippian section is problematic as a number of 

zones are characterized by quartz abundances of >50%. Using a sandstone matrix for 

calibration in these zones may be more appropriate. If the formation’s actual density is 

less than the matrix density used to calculate porosity (i.e. – calculating a sandstone 

porosity using a limestone matrix density), the log shows porosity values that are higher 

than the actual porosity of the formation.  

Density logs typically plot within the range of 5-20% porosity while neutron logs 

generally plot between 0-10% porosity. Generally speaking, there is a gross trend of 

increasing porosity at the top of high frequency 4th order sequences associated with the 

regressive phase. As with observations made using gamma-ray logs, density and neutron 

porosity logs demonstrate inconsistent trends between wireline log signatures and 

facies types and the sequence stratigraphic framework. As a result, correlations of 

reservoir-quality units based solely upon density and neutron porosity log signatures will 

likely result in erroneous interpretations.  
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Figure 28. West to east cross section of depositional facies, 3rd, 4th, and 5th order 
sequences and cycles, and conventional wireline logs (gamma-ray, density porosity, and 
neutron porosity). Refer to Figure #23 for facies names and color associations. Gamma-
ray is plotted on the left track. Fourth-order high frequency sequences appear to 
correlate well with gamma-ray signatures, with the base of the 4th order sequences 
corresponding to pronounced spikes in gamma-ray values. Some 5th order high 
frequency cycles also appear to correlate with elevated gamma-ray values, but this 
trend is inconsistent. These trends are comparable to those observed in spectral 
gamma-ray readings.  Density and neutron porosity logs are displayed on the center 
track. The density porosity log is displayed as a blue dashed line and the neutron 
porosity log is displayed as a solid red line. Both logs are calibrated to a limestone 
matrix. There is a gross, yet inconsistent, trend of increased porosity values in the 
regressive phases of the 4th order high frequency sequences.  
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DEPOSITIONAL ANALOGS 

 

 Integration of ancient and modern analogs into a reservoir characterization 

study is helpful in characterizing and predicting the lateral and vertical distribution of 

both reservoir and non-reservoir facies in the subsurface (Grammer et al., 2004). 

Ancient analogs (e.g. – outcrop analogs) are commonly used as a 2-D proxy for 

subsurface reservoir distribution, but are limited by exposure and may be altered by 

surface processes that create an exaggerated diagenetic overprint (Grammer et al., 

2004). Modern analogs illustrate the spatial distribution and geometry of facies within a 

single time slice, but do not demonstrate the effects compaction and later diagenesis 

may have on reservoir units (Grammer et al., 2004). Nevertheless, the use of analogs in 

a carbonate reservoir characterization study allows for an enhanced understanding of 

reservoir heterogeneity and can aid in predicting the distribution of reservoir facies in 

the subsurface (Grammer et al., 2004). 

 

ANCIENT (OUTCROP) ANALOG: SAN ANDRES FORMATION, PERMIAN BASIN, TX 

 Facies types and stacking patterns similar to those observed in the “Mississippian 

Limestone” have been recorded in the Permian-aged San Andres Formation in West 

Texas. The San Andres Formation in the Permian Basin is interpreted to represent 

deposition on a distally steepened carbonate ramp (Kerans et al., 1994). According to 

the model developed by Kerans et al. (1994), the facies observed in the three cores used 

in this study are comparable to the carbonate facies observed in the San Andres 
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Formation in the distal ramp crest, outer ramp, and distal outer ramp environments 

(Figure 29). Both the ramp crest and outer ramp settings are dominated by bioclastic 

packstones and grainstones composed of diverse marine fauna (Kerans et al., 1994). 

Distal outer ramp facies are described as having millimeter-scale laminations, darker 

coloration, and minimal bioturbation indicating deposition in a deeper, lower-oxygen 

environment (Kerans et al., 1994). Deposition of grainstones within the ramp crest 

setting is thought to have occurred in water depths of 0-10ft (0-3m) while outer ramp 

and distal outer ramp packstones are interpreted to have been deposited between 30-

200ft (10-60m) and greater than 200ft (60m) water depth, respectively (Kerans et al., 

1994).  

 

Figure 29. 2-D facies distribution observed in the Permian-aged San Andres Formation 
outcrop, Algerita Escarpment, Guadalupe Mountains, West Texas. This dip elongate 
section illustrates the distribution of facies across a distally steepened ramp. The facies 
and stacking patterns observed in the carbonate deposits of San Andres Formation are 
similar to those observed in the “Mississippian Limestone” of the Mid-Continent. Facies 
stacking patterns observed in the three cores used in this study suggest Mississippian 
deposition occurred within the ramp crest, outer ramp, and distal most portion of the 
outer ramp environments (outlined in red). Modified from Kerans et al., 1994. 
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The highest degree of heterogeneity is observed in the ramp crest zone. Cycles 

observed in the ramp crest environment demonstrate an overall shallowing-upwards 

(shoaling-upwards) profile consisting of dense mudstone-wackestone at the base that 

transitions into vertically into skeletal packstone and grainstone facies (Kerans et al., 

1994).  Facies stacking patterns observed in the “Mississippian Limestone” cores used in 

this study resemble those recorded in the San Andres Formation ramp crest and outer 

ramp environment (Figure 30). Similar depositional environments and facies stacking 

patterns suggest that facies geometries may be similar, therefore the San Andres 

Formation could serve as a predictive tool used to identify facies types and distributions 

in the subsurface.  

 

Figure 30. Diagram showing stacking patterns observed in the San Andres Formation 
(left) and the “Mississippian Limestone” in north-central Oklahoma (right). Facies types 
and textures observed in the “Mississippian Limestone” resemble those observed in the 
San Andres Formation suggesting that the San Andres Formation may serve as a good 
depositional analog for the “Mississippian Limestone” of north-central Oklahoma. Using 
the San Andres Formation as an analog, it is interpreted that the Mississippian section 
was deposited in the distal ramp crest, outer ramp, and distal outer ramp environments 
as illustrated in Figure 29. 
 

Although the facies stacking patterns and depositional environments observed in 

the San Andres Formation resemble those observed in the “Mississippian Limestone”, 
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differences between the two systems exist. Fourth-order high frequency sequences 

recorded in the San Andres Formation are 100’s of feet thick whereas those observed in 

the studied Mississippian cores are generally 10’s of feet thick. Additionally, high 

frequency sequences in the San Andres Formation show a broader spectrum of fauna 

and facies than that observed in the “Mississippian Limestone” in north-central 

Oklahoma, and there is no note of hummocky or swaley cross stratification. These 

differences may be attributed to differences in geological and environmental conditions 

during the time of deposition (e.g. – amplitude of sea level fluctuations or arid v. humid 

climates). Nevertheless, the San Andres Formation exhibits similar facies stacking 

patterns to those observed in the “Mississippian Limestone” and is a suitable analog 

that may help to explain the regional-scale geometry and spatial distribution of facies. 

 

MODERN ANALOG: PERSIAN (ARABIAN) GULF 

Comparing ancient deposits to modern depositional environments is a valuable 

practice that helps to conceptualize the spatial distribution and geometry of reservoir 

facies during a single time slice (Grammer et al., 2004). For this study, the Persian Gulf, a 

modern example of carbonate deposition on a gently sloping ramp in an arid climate, is 

used as an analog for the “Mississippian Limestone”. By using the Persian Gulf as a 

modern analog to the “Mississippian Limestone” it is possible to observe not only the 

regional facies distribution, but the high degree of heterogeneity associated with the 

system that may be present at any given time. This is something that cannot be 

observed using generalized paleodepositional models such as Lane and Dekyser (1980). 
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The Persian Gulf is a northwest-southeast trending body of water that is 

bordered by Oman, the United Arab Emirates (USE), Qatar, and Saudi Arabia to the 

south and southwest, and Kuwait, Iraq, and Iran to the northwest and north. The 

Persian Gulf carbonate ramp is part of the gently sloping Saudi Arabian shield where 

water depths range from largely exposed sabkhas to depths greater than 260ft (80m) in 

the Zagros Mountain foredeep in Iran (Wilkinson and Drummond, 2004). Holocene 

sediments have accumulated over an area that is 310 miles (500km) long and up to 37 

miles (60km) wide (Alsharhan and Kendall, 2003). Sedimentation in the Persian Gulf is 

believed to be controlled by a number of factors including an arid climate, wave energy, 

orientation with respect to NW prevailing winds, and offshore barriers (Alsharhan and 

Kendall, 2003).  

General facies types observed in the Persian Gulf consist of supratidal sabkha 

deposits, various types of bioclastic carbonate sands composed of skeletal fragments, 

peloids, and ooids, muddy carbonate sands, and carbonate mud (Figure 31) (Alsharhan 

and Kendall, 2003; Wilkinson and Drummond, 2004). Bioclastic and oolitic sands 

deposited in high-energy settings are dominant on the southern margin of the Arabian 

coast (Alsharhan and Kendall, 2003). These bioclastic sediments are found as deep as 

20m, suggesting that storm wave base is at least this deep (Alsharhan and Kendall, 

2003). Generalized facies types observed in the Persian Gulf occur in wide facies belts 

paralleling the shoreline, with the highest energy facies (carbonate sands) being 

deposited closest to the shore (Alsharhan and Kendall, 2003).  
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Comparison of Mississippian facies to those observed in the Persian Gulf allows 

for a first order interpretation of the spatial distribution of facies and possible water 

depths at the time of deposition. Peloidal and skeletal packstones to grainstones 

observed in the Mississippian cores used in this study are similar in composition and 

texture to the bioclastic carbonate sands observed in the Persian Gulf. Similarly, 

bioturbated wackestones and carbonate mudstones observed in the Mississippian 

section are comparable to the muddy carbonate sands and carbonate mud observed in 

the Persian Gulf, respectively. Using the Persian Gulf as an analog, it is possible that the 

peloidal and skeletal packstone and grainstone facies observed in the “Mississippian 

Limestone” were deposited in 3-65ft (1-20m) water depth, are strike elongated, and 

decrease in thickness in a basinward direction. It is also possible that the carbonate 

mudstone facies observed in the “Mississippian Limestone” was deposited in greater 

than 65ft (20m) water depth, is extensive in a strike and dip direction, and increases in 

thickness in a basinward direction. 
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Figure 31. Regional map of the Persian Gulf illustrating the distribution and variation of 
facies textures. Using the Persian Gulf carbonate ramp system as a modern depositional 
analog to the “Mississippian Limestone” provides a means to visualize possible facies 
distributions and heterogeneities that may be present in the subsurface. This facies map 
shows a single time slice of general facies trends and illustrates the high degree of 
heterogeneity within the system due to local variations in environmental conditions (i.e. 
– a facies mosaic). Peloidal and skeletal packstones to grainstones observed in the 
Mississippian subsurface cores used in this study are similar in composition and texture 
to the bioclastic carbonate sands (yellow) observed in the Persian Gulf. Bioturbated 
wackestones and carbonate mudstones observed in the Mississippian section are 
comparable to the muddy carbonate sands (dark yellow-orange) and carbonate mud 
(brown) observed in the Persian Gulf, respectively. Modified from Wagner and Togt, 
1973.  
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3-D SEQUENCE MODELING 

 

Three-dimensional sequence modeling of a depositional system allows for the 

integration of multiple datasets to create a visualization of sequence continuity and 

geometry. These models help to guide geologic interpretations and also aid in the 

communication between geoscientists and non-geoscientists (Coburn et al., 2006; Pyrcz 

and Deutsch, 2014 Tinker, 1996). The output visualization is ultimately constrained by 

the sequence stratigraphic framework developed previously from core and thin section 

analysis. Constraining the data using the sequence stratigraphic framework allows for 

more geologically accurate modeling that takes into consideration the vertical and 

lateral heterogeneities that cannot be accurately modeled using lithostratigraphy (Pyrcz 

and Deutsch, 2014; Tinker, 1996). For this study, a 3-D sequence model was created to 

observe the vertical and lateral continuity and regional geometries of the high 

frequency 4th order sequences across the study area.  

 

DATASET 

 The software used for 3-D modeling in this study is Petrel by Schlumberger. 

Petrel is a geostatistical reservoir modeling program that incorporates a suite of data 

including seismic, wireline logs, petrophysical data, lithology, and facies. The numerical 

data input into Petrel for this study consists of well information (i.e. – latitude and 

longitude), a log suite including gamma-ray and density and neutron porosity logs, and 

surfaces (4th order high frequency sequence boundaries).  The study area defined for 
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this 3-D model is a rectangle that extends 43.5 miles (70.1km) in a west-east direction 

and 20.1 miles (32.4km) in a north-south direction and encompasses most of Logan and 

Payne Counties (Figure 32). The three wells used in this study cover a west-east distance 

of 28.5 miles (45.9 km). Core #1 and Core #2 are 11.1 miles (17.8km) apart and Core #2 

and Core #3 are 17.4 miles (28.0 km) apart. Seventy-eight additional raster logs were 

used to infill between the three cored wells at an average spacing of 0.5 miles (0.8km).  

 

 

Figure 32. Map showing the locations of wells used to construct the 3-D model for the 
Mississippian depositional system in the Mid-Continent. The three cores used in this 
study are highlighted in red. Wells with raster logs used to infill between wells with 
cores are shown in white. The study area (outlined in light blue) extents 20.1 miles 
(32.4km) in and dip (N-S) direction and 43.5 miles (70.1km) in a strike (W-E) direction 
and encompasses most of Logan and Payne Counties (outlined in yellow). 
 

SURFACE MODELING 

 High frequency 4th order sequences originally identified in core were correlated 

throughout the study area using wireline logs and input in Petrel to create a sequence 
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stratigraphic framework for the 3-D model. Surfaces were modeled using the 

convergent interpolation algorithm because of its simplistic representation of the 

surface geometries. Modeling these surfaces helps to constrain the lateral and vertical 

variability and geometries of the high frequency sequences throughout the study area. 

The surfaces and horizons used in the modeling process are as follows (Figure 33): 

Sequence Boundary 0 (S0) 

 S0 represents the contact between the Devonian-aged Woodford Shale 

and the overlying “Mississippian Limestone”. This boundary is easily identified in 

core as a dark greenish gray glauconitic sandstone overlying a dark grayish black 

shale interval. This contact is observed in all three cores used in this study and is 

readily identified in a gamma-ray log signature. The Woodford Shale possesses a 

distinctive “hot” gamma-ray log signature (15-400 API units) whereas the 

“Mississippian Limestone” is characterized by a significantly lower gamma-ray 

signature (10-100 API units). This contact was picked in all 81 wells primarily 

using gamma-ray signatures. Mississippian deposition initiated on the 

unconformity surface on top of the Woodford Shale, which makes this surface 

the ideal bounding surface for the base of the model. 

Sequence Boundaries 1-4 (S1-S4) 

Sequence boundaries 1 through 4 were identified based upon facies 

stacking patterns observed in the three cores used in this study. S1-S4 correlate 

to the tops of the four high frequency sequences identified in the cores used in 

this study.  
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Sequence Boundary 5 (S5)  

 Sequence boundary 5 is a regionally extensive erosional unconformity 

that represents the boundary between the top of the Mississippian section and 

the overlying Pennsylvanian-aged shales and sandstones. The unconformable 

boundary between the “Mississippian Limestone” and Pennsylvanian sediments 

is the uppermost bounding surface of the model. This boundary was observed in 

each of the three cores used in this study and was identified on all additional 

raster logs using differences in the gamma-ray signature. The Mississippian 

carbonate deposits are characterized by a relatively low gamma-ray log signature 

(15-30 API units) and the overlying Pennsylvanian sediments are characterized 

by distinctively higher gamma-ray log readings (generally 75-90 API units). 

Throughout most of the study area S5 and S4 are the same surface with S5 only 

separating from S4 in the south-central region of the study area. This is likely 

because S5 was either eroded or was not deposited across the rest of the study 

area. 
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Figure 33. Figure showing all surfaces used in constructing the 3-D model for the 
Mississippian section within the study area. All surfaces extend across the entire study 
area and have been vertically exaggerated 50X to better illustrate surface features. 
Surfaces (S0-S5) are displayed at an even vertical spacing in this figure and do not reflect 
the thickness variations in the sequences (S1-S5). The three wells with cores used in this 
study are highlighted in red. Locations of wells with raster logs used to infill between 
wells with cores are shown in white. S0 representing the top of the Woodford 
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Shale/base of the “Mississippian Limestone” is a completely flat surface. S1 and S2 do 
not show a high degree of topographic variation and are relatively flat surfaces 
compared to S3, S4, and S5. S4 and S5 are uneven surfaces as these represent the 
regionally extensive erosional unconformity at the top of the Mississippian section. 
 

STRATIGRAPHIC AND STRUCTURAL MODELING FRAMEWORK 

 The grids and zones within the Petrel model are defined based on 4th order 

sequences derived from core analysis. The interpreted grid provides the stratigraphic 

and structural framework for the model. Based on aerial extent of the model and the 

spacing between data points, the length and height of the individual cells used for this 

project was 50ft by 50ft, resulting in a total of 592,020 grid cells that were used for 

model generation. 

Isopach (thickness) maps were constructed for each high frequency sequence 

and were used to generate surfaces. Surfaces generated using structural depth points 

produced anomalous interpolations such as sharp structural peaks and overlap or 

crossing of the high frequency sequence boundaries. Using isopach maps to create 

surfaces resolved these issues and allowed more control to be placed on the geometry 

of each layer.  

The base of the model (S0) was gridded as a flat surface to simulate “flattening” 

on the top of the Woodford Shale (or base of the “Mississippian Limestone”). This helps 

to better illustrate the regional geometries associated with the overlying high frequency 

sequences defined in the Mississippian section. Using the calculator function, the S1 

isopach was added to the flat S0 surface to create the S1 surface. This methodology was 

followed for each high frequency sequence boundary to generate the S1-S5 surfaces.  
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S0-S5 surfaces were used as horizons to create zones for the 3-D grids in the 

model. Zones were created between each of the high frequency sequence boundaries 

using S0 (top of the Woodford Shale/base of the “Mississippian Limestone”) as the basal 

surface as described below. A total of five 4th order sequences were interpreted 

throughout the Mississippian section, each of which was modeled as a distinct zone (S1-

S5) to construct a 3-D model (Figure 34). 

Layering options utilized in this study were “proportional” and “follow base.” 

Proportional maintains the same number of layers throughout the model regardless of 

thickness and was used for this study in the three lowermost zones. Because the top of 

the “Mississippian Limestone” is an uneven, regionally unconformable surface that is 

represented by S3, S4, or S5 depending on its location in the study area, these layers 

utilized the follow base option to reduce the jaggedness of each zone likely resulting 

from its unconformable top.  

 

RESULTS 

Zones, or sequences, 1-4 are present throughout the entire study area and have 

an average thickness of 54ft (16.5m). Zone, or sequence, 5 is present only in the south 

central portion of the study area and is interpreted to represent a sequence that was 

likely eroded away, or not deposited, across the rest of the study area. The 3-D model of 

the Mississippian section within the study area reveals that sequences 1-4 (S1-S4) are 

fairly continuous in a strike direction (W-E) and show a gradual decrease in thickness in 

an eastward direction (Figure 35). In the dip direction (N-S), the sequences show 
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progradational geometries with progressive thinning towards the north and thickening 

towards the central and southern portions of the study area (Figure 36). Overall, this 3-D 

model shows that the Mississippian section was deposited as a series of low-relief, 

southward-prograding wedges on a gently sloping surface (i.e. – a carbonate ramp). 

These results are consistent with depositional environment interpretations made using 

facies analysis.  

 

 
 
Figure 34. A) Three-dimensional model of the Mississippian section across the study 
area. No vertical exaggeration has been applied to this model. As a result, the model 
appears to be completely flat. B) 3D model of the Mississippian section across the study 
area that has been vertically exaggerated by 50X. High frequency sequence geometries 
can only be observed if the model is vertically exaggerated. Topographic highs and lows 
appear more dramatic as a result of vertical exaggeration.  

N 
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Figure 36. A series of dip-oriented (N-S) slices passing through each of the three cores 
used in this study. Slices have been vertically exaggerated by 100X to better illustrate 
sequence geometries. S1-S4 are present in all three dip sections and demonstrate 
progradational geometries in a southward (basinward) direction. S5 is present only in 
the center dip section and is interpreted to represent another prograding wedge that 
was either not deposited or eroded away across the rest of the study area. These dip 
sections suggest that Mississippian deposition occurred as a series of prograding wedges 
on a regionally-extensive, gently sloping ramp system. 
 

LIMITATIONS 

 Although 3-D modeling has helped to identify high frequency sequence 

geometries across the study area, there are some limitations associated with the 

dataset. As previously discussed, the three wells used in this study span across two 
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counties (Logan and Payne Counties), and cover a west-east distance of 28.5 miles 

(45.9km). Core #1 and Core #2 are 11.1 miles (17.8km) apart and Core #2 and Core #3 

are 17.4 miles (28.0km) apart. Spaces between the wells were infilled with raster logs 

downloaded from IHS at an average spacing of 0.5 miles (0.8km) in the strike and dip 

directions. This spacing of cores, and wireline logs, is not ideal for facies or sequence 

modeling as heterogeneities in carbonate depositional systems are known, and 

expected, to occur at a finer scale. Realistic facies heterogeneities are unresolvable 

using this dataset. However, an understanding of the facies stacking patterns related to 

the high frequency 4th order sequences and the overall depositional environment allows 

for the prediction of facies types away from wells with core. Additionally, these three 

cores are interpreted to be oriented along, or oblique to, depositional strike. As a result, 

the model is poorly constrained by rock data in a dip direction. It must be emphasized 

that this model is only constrained using three cores and 79 wireline logs. Integration of 

more datasets (i.e. – outcrop, seismic, additional cores or logs, etc.) can be used to 

better constrain the 3-D model to maintain its geologic integrity.  
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CHAPTER III 
 

 

DISCUSSION 

 

RESERVOIR CONSIDERATIONS 

 Consideration of reservoir potential within depositional and stratigraphic trends 

provides insight in to how reservoir quality and distribution is related to those aspects in 

the “Mississippian Limestone” in north-central Oklahoma. Observations and 

interpretations from core and wireline log analyses indicate a strong depositional 

control on facies distribution. If a relationship between depositional facies and reservoir 

aspects can be determined, the established vertical stacking patterns of facies and 

insight of depositional geometries from modern and ancient analogs can be used to 

better understand and predict the spatial distribution of reservoir quality units in the 

subsurface both vertically and laterally. Relationships between reservoir properties and 

depositional aspects may then be related to wireline log signatures in order to 

extrapolate interpretations away from the study area.  

 The reservoir aspect of this study is based on data collected from three cores. 

Analysis of core data show weak trends between porosity and permeability 

development and depositional facies (Figure 37). These observations indicate that 
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reservoir development may be related to other factors (e.g. – structural or diagenetic 

processes). General relationships between reservoir properties and depositional facies 

interpreted using average values are outlined below. 

 

Figure 37. Cross-plot of whole core porosity and permeability by depositional facies for 
all three wells used in this study. Porosity (%) is plotted on the x-axis and permeability 
(mD) is plotted on a log scale on the y-axis. This cross-plot illustrates the scatter 
between depositional facies and their corresponding petrophysical properties making 
any patterns difficult to identify.  
 

 Porosity-permeability cross-plots show that the glauconitic sandstone facies 

(Facies 1) and the skeletal grainstone facies (Facies 5) have the highest reservoir 

potential (Figure 38). Facies 1 is of the highest reservoir quality and has an average 

porosity of 9.5% and an average permeability of 0.358 mD. Facies 1 is characterized by 

intracrystalline porosity within dolomite crystals, intraparticle porosity within skeletal 

fragments, and interparticle porosity between quartz and glauconite grains.  Facies 1 

only occurs near the base of each of the cores and is associated with the transgressive 
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phase of the overall inferred 3rd order sequence. Although Facies 1 is of good reservoir 

quality, it is volumetrically insignificant throughout the cores (1.1% of Core #1, 0.55% of 

Core #2, and 0.77% of Core #3).  

Facies 5 has a lower average porosity (3.3%) and permeability (0.049 mD) than 

Facies 1. The dominant pore types in Facies 5 are solution enhanced moldic porosity 

developed from the dissolution of skeletal grains, vuggy porosity, and fracture porosity 

(Figure 39). Facies 5 is associated with the regressive phase of 4th and 5th order high 

frequency sequences and cycles. Oil staining is commonly observed in Facies 5 and is 

heaviest in the uppermost high frequency sequences (sequences 3 and 4). Facies 5 

occurs throughout all three cores and is volumetrically significant in each (31.3% of Core 

#1, 45.6% of Core #2, and 53.8% of Core #3).  
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Figure 38. Cross-plots of each depositional facies (Facies 1-5) on the same scale (0-12% 
porosity on the x-axis and 0.00001-1.0 mD permeability on a log scale on the y-axis) 
with the average whole core porosity and permeability for each depositional facies 
plotted on the lower-right graph (0-10% porosity on the x-axis and 0.001-1.0 mD 
permeability on a log scale on the y-axis). This figure illustrates the wide distribution of 
porosity and permeability values for each facies individually across the study area, but 
also shows a relationship between reservoir and non-reservoir quality facies when 
average porosity and permeability values for each facies are plotted.  
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Figure 39. A-B) Core photograph and thin section photomicrograph of Core #3 at 
4353.9’. This sample shows Facies 5 with a measured porosity of 8.9%. In core the 
sample is visibly oil stained (yellowish brown tint) and shows a vertical fracture. Thin 
section is alizarin red stained and porosity is shown in bright fuchsia. This sample is 
characterized by solution enhanced moldic and vuggy porosity formed by the 
dissolution of skeletal fragments. The thin section also shows a partially filled fracture. 
XRD: 1% clays, 33% carbonates (calcite and minimal amounts of iron-rich dolomite), and 
66% other minerals (dominantly quartz with minor amounts of potassium feldspar, 
plagioclase feldspar, and pyrite). C-D) Core photograph and thin section 
photomicrograph of Facies 5 from Core #1 at 5599.4’ with a measured porosity of 
10.6%. In core the sample is visibly oil stained and contains multiple fractures. Thin 
section is blue epoxy impregnated. This sample is characterized by solution enhanced 
moldic and vuggy porosity formed by the dissolution of skeletal fragments. XRD: 0% 
clays, 59% carbonates (calcite and lesser amounts of iron-rich dolomite), and 41% other 
minerals (dominantly quartz with minor amounts of potassium feldspar, plagioclase 
feldspar, and pyrite). 
 

In contrast, the peloidal packstone to grainstone facies (Facies 4) and the 

burrowed calcareous mudstone facies (Facies 2) possess the lowest porosity and 

permeability values and may control the vertical variability and compartmentalization of 
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reservoir units (Figure #29). Facies 4 has the lowest average permeability of 0.003 mD 

and an average porosity of 1.4%. Facies 4 is most common in the regressive phase of 4th 

and 5th order high frequency sequences and cycles. Facies 2 has a slightly higher average 

permeability of 0.019 mD and average porosity of 1.6%. Facies 2 is associated with the 

transgressive phase of 4th and 5th order high frequency sequences and cycles.  

 Analysis of core data shows a weak trend between reservoir development and 

position within the sequence stratigraphic framework. However, a generalized trend can 

be observed when comparing reservoir development to the 4th order high frequency 

sequences (Figure 40). Similar to the cross-plot of porosity and permeability and 

depositional facies, the cross-plot of porosity and permeability and high frequency 

sequence number shows a high degree of scatter within the data. However, if an 

average porosity and permeability for each sequence is plotted, sequences 3 and 1 

possess the highest reservoir potential. This is likely due to the abundance of reservoir-

quality Facies 5 in sequence 3 and Facies 1 in sequence 1. Although sequence 4 has a 

slightly higher average porosity value than sequence 1, sequence 4 is characterized by a 

significantly lower average permeability value. The development of porosity and/or 

permeability does not seem to be directly related to transgressive or regressive phases 

of the 4th order high frequency sequences (Figure 41). This is likely because the highest 

quality reservoir facies, Facies 1 and Facies 5, are associated with the transgressive and 

regressive phases of the high frequency sequences, respectively.  
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Figure 40. Cross-plot of whole core porosity and permeability by high frequency 
sequence for all three wells used in this study. Porosity (%) is plotted on the x-axis and 
permeability (mD) is plotted on a log scale on the y-axis. This cross-plot illustrates the 
scatter between reservoir and non-reservoir quality facies in each high frequency 
sequence and their corresponding petrophysical properties making any patterns difficult 
to identify. A plot of average porosity and permeability values for each high frequency 
sequence indicates that sequence 3 and sequence 1 possess the highest porosity and 
permeability values. Although sequence 4 has a slightly higher average porosity value 
than sequence 1, sequence 4 is characterized by a significantly lower average 
permeability. 
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Figure 41. Cross-plot of whole core porosity and permeability by transgressive versus 
regressive phase of high frequency sequences for all three wells used in this study. 
Porosity (%) is plotted on the x-axis and permeability (mD) is plotted on a log scale on 
the y-axis. This cross-plot illustrates the scatter between reservoir and non-reservoir 
quality facies in each high frequency sequence and their positions within the high 
frequency sequence. There is no apparent trend between porosity and permeability 
development and position within the high frequency sequence. However, in general, the 
data suggest that porosity is better developed in the regressive phase. 
 

NEMAHA FAULT ZONE AND STRUCTURALLY CONTROLLED ACCOMMODATION 

 Marine accommodation is governed by changes in relative sea level, which are 

controlled by both eustatic sea level fluctuations and tectonic subsidence/uplift. 

Because structural movement during deposition can result in relative changes in sea 

level (and therefore accommodation), a definite relationship can be drawn between 

syndepositional geologic structure and depositional facies. Therefore, it is important to 

examine structures in and around the study area that may have been active during the 

Mississippian. 
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The Nemaha Uplift/Ridge is a structural high located just to the west of the study 

area that is generally believed to have initiated during the Late Mississippian or Early 

Pennsylvanian (Gay, 2003). It is therefore interpreted that the Nemaha Ridge and 

associated faults are responsible for post-depositional erosion of the “Mississippian 

Limestone”. However, the sequence stratigraphic framework established for the study 

area suggests that the Nemaha Uplift and associated structures were active not only 

after, but also during the time of deposition.  

As illustrated by Lane and DeKyser (1980), the depositional strike of the system is 

interpreted to trend roughly west-east. Therefore, a transect connecting the three cores 

used in this study would represent an along strike or oblique to strike profile. Assuming 

a west-east trending strike and little tectonic activity during the time of deposition, it 

was expected that the sequences would maintain a relatively uniform thickness in the 

strike direction. However,  the cores show an overall thickening of the Mississippian 

section in a westward direction, towards the Nemaha Ridge, with the “Mississippian 

Limestone” doubling in thickness from Core #3 (143.2ft; 43.6m) to Core #1 (323.7ft; 

98.7m). Despite this difference in thickness, the four 4th order high frequency sequences 

are correlative across the study area. This suggests a possible syndepositional tectonic 

control on Mississippian deposition within the study area.  

Within the study area, the axis of the Nemaha Ridge trends roughly north-south, 

exhibiting a strike-slip movement with a slight upthrow to the east (Figure 42). The 

thickest Mississippian cores within the study area (Cores #1 and #2) occur on the 

downthrown side of a large west-east trending fault (Figure 42 and Figure 43, B), and 
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the thinnest core (Core #3) is positioned on the upthrown block of a nearby, smaller 

northeast-southwest trending fault (Figure 42 and Figure 43, D). These variations in 

thickness suggest that the Nemaha Uplift/Ridge and associated faults within the study 

area were active during deposition and controlled deposition across the study area by 

locally creating accommodation on their downthrown sides and diminishing 

accommodation on their upthrown sides. 
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Figure 42. Map showing faulting (blue) associated with the Nemaha Uplift (off-white) in 
central Oklahoma. The study area is outlined in red. Faulting associated with the Nemaha 
Uplift is believed to have affected Late Mississippian deposition. This study focuses on the 
area outlined in green for structural interpretations. Modified from Gay, 2003.  
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Figure 43. Schematic block diagram illustrating structures within the area of focus 
(outlined in green in Figure 42). The Nemaha Uplift/Ridge (A) is located to the west of 
the study area and is upthrown on its eastern flank. Two large west-east trending faults 
(B and C) pass through the study area and are bounded to the east by a smaller, 
northeast-southwest trending fault that is upthrown on its western edge. The cores 
show an overall thickening of the Mississippian section in a westward direction with the 
“Mississippian Lime” doubling in thickness from Core #3 (143.2ft; 43.6m) to Core #1 
(323.7ft; 98.7m). The location of the thickest cores (Cores #1 and #2) adjacent to the 
downthrown side of a large west-east rending fault (B) and the thinnest core (Core #3) 
on the upthrown side of a northeast-southwest trending fault (D) and the continuity of 
high frequency sequences between the three cores suggests that these faults were 
active during Mississippian deposition and locally created or diminished 
accommodation.  
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If a series of these faults were active around the Nemaha fault zone during 

deposition, it is likely they too had a significant control on accommodation, which in 

turn led to changes in thickness and facies types. Not only would widespread faulting 

result in facies variations across relatively short distances, but these faults could also 

serve a fluid conduits that localize karst formation and diagenetic processes as well as 

affect the formation of stratigraphic and structural traps and hydrocarbon charging, 

storage, and expulsion.   

Activity of the Nemaha Ridge during the Mississippian may also help explain the 

abundance of quartz throughout the section (generally 30-45% throughout the section). 

Well-rounded as well as sub-angular silt to very fine sand-sized quartz grains are 

observed throughout the Mississippian section in the study area. This suggests that 

some quartz grains (i.e. – the well-rounded, silt sized quartz grains) are windblown, 

while others (i.e. – sub-angular grains) may have originated from a closer source area. It 

is known that uplifts associated with the Nemaha fault system were created in Kansas 

and Oklahoma (Gay, 2003). If these uplifts existed during Mississippian deposition, they 

may have served as nearby sources of quartz, and lesser amounts of feldspars and 

micas, that were brought into the system. 

Tectonism related to the Nemaha Ridge may have also affected sedimentation 

rates in the study area. In general, 3rd order sequences are described as being 100’s of 

meters thick, 4th order high frequency sequences as 10’s of meters thick, and 5th order 

high frequency cycles as few meters thick. 4th order high frequency sequences observed 

in the San Andres Formation in the Permian Basin are upwards of 200ft thick (10’s of m 
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thick) whereas those observed in the studied Mississippian cores are thinner and range 

in thickness from approximately 25ft (7.5m) to a maximum of 115ft (35m) (a few m thick 

to 10’s of m thick). In addition to accommodation, the thickness of these individual high 

frequency sequences is also controlled by carbonate sedimentation rates, which are 

highly dependent on environmental conditions such as sunlight, salinity, nutrients, and 

turbidity (Read, 1995). If the uplifts in Kansas and Oklahoma were present during the 

time of deposition and were significant sources of siliciclastic input, the Mississippian 

section in north-central Oklahoma may have suffered, to some degree, from clastic 

poisoning due to turbidity reducing light or suffocating filter feeders (Read, 1995). 

Therefore, tectonic uplift along the Nemaha Ridge and subsequent siliciclastic input may 

have resulted in reduced carbonate sedimentation rates and thinner than expected high 

frequency sequences within the study area.   

 

FAIR WEATHER WAVE BASE FLUCTUATIONS 

 The reservoir quality skeletal packstone to grainstone facies and sealing peloidal 

packstone to grainstone facies observed in the Mississippian section in north-central 

Oklahoma are both interpreted to have been deposited at or just below fair weather 

wave base. Fair weather wave base is the water depth below which surface wave action 

no longer stirs or moves the sediment (Flügel, 2010). The depth of fair weather wave 

base varies widely depending on wave amplitude and fetch, bottom topography, storm 

activity, latitude, and overall morphology of the depositional system (e.g. – ramp, shelf, 

or rimmed platform) and its orientation in relation to the prevailing wind direction 
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(Flügel, 2010). In the skeletal grainstone facies, hummocky cross stratification was 

observed, indicating that storms intermittently influenced deposition. Based on 

observations made in this study (i.e. – correlations of high frequency sequences across 

the study area, orientation of the ramp system, and sequence thickening and thinning in 

relation to structure) it has been suggested that faults may have been active during the 

time of deposition. Storm influence and changing bottom topography due to tectonic 

activity could have influenced the position of fair weather wave base across the study 

area throughout Mississippian deposition. The alteration of fair weather wave base may 

have resulted in facies variations that differ from the idealized vertical succession and 

created facies patterns unrelated to sea level change. This may have been particularly 

true during the regressive phase where facies are generally thinner and facies changes 

occur more rapidly, making high frequency cycles difficult to identify. However, larger-

scale 4th order high frequency sequences still exhibit repetitive shoaling upwards 

packages that are identifiable and correlative on wireline log signatures.  
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CHAPTER IV 
 

 

SUMMARY AND CONCLUSIONS 

 

 This study uses an integrated approach to aid in the understanding of reservoir 

development within the “Mississippian Limestone” of the Mid-Continent. A better 

understanding of the depositional environment, facies type and distribution, and 

reservoir quality was gained by establishing a sequence stratigraphic framework utilizing 

detailed core descriptions, thin section data, and geostatistical modeling. Key 

conclusions from this study are: 

1. Core and thin section analysis indicate the presence of 5 different facies 

types that repeatedly stack into a shoaling-upward (shallowing-upward) 

succession.  

2. Analysis of facies stacking patterns demonstrates a three-tiered hierarchy of 

stratigraphic organization consisting of a large-scale sequence (3rd order), 

high frequency sequences (4th order), and high frequency cycles (5th order). 

The large-scale, 3rd order sequence represents the overall lowering of sea 

level throughout the Mississippian. Four interpreted 4th order high frequency 

sequences are identified within the Mississippian section and are correlative 
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across the study area. Higher frequency cycles of probable 5th order are 

superimposed within the 4th order sequences, but are not correlative 

between the three cores used in this study, which is believed to be due to 

autocyclic processes. Correlative 4th order sequences appear to control the 

overall facies distribution while 5th order high frequency cycles control 

internal facies heterogeneity. 

3. Depositional facies and 4th order high frequency sequences correlate to 

wireline log signatures and are best identified using gamma-ray and density-

neutron porosity curves. 4th order high frequency sequences usually show an 

upward decrease in gamma-ray values and, generally, an upward increase in 

density-neutron porosity values. 5th order high frequency cycles do not 

consistently coincide with gamma-ray signatures and cannot be correlated 

using wireline log signatures. Although high frequency 4th order sequences 

are generally observable on wireline logs, correlations based solely on 

wireline log signatures will likely result in erroneous correlations. Wireline 

logs must be ground-truthed to rock data to accurately identify high 

frequency sequences and cycles.  

4. Deposition occurred on a ramp to distally steepened ramp. This was inferred 

from facies types and stacking patterns and comparison with ancient and 

modern analogs. This interpretation contrasts greatly from the commonly 

used paleodepositional models that suggest deposition on a 

platform/rimmed platform or within a starved basin. This highlights the 
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inaccuracies of the current depositional models and illustrates the need to 

revise paleogeographic reconstructions. 

5. The San Andres Formation located in the Guadalupe Mountains may serve as 

a good regional analog to the Mississippian system of the Mid-Continent. 

Facies observed in three Mississippian cores used in this study are 

comparable to ramp crest, outer ramp, and distal outer ramp deposits of the 

San Andres and likely exhibit similar facies geometries.  

6. The Persian Gulf may serve as an adequate modern depositional analog to 

the “Mississippian Limestone”. Comparison of Mississippian facies observed 

in the study area to those observed in the Persian Gulf allows for a first order 

approximation of water depth and facies geometries.  

7. Three-dimensional modeling of high frequency 4th order sequences reveals 

that interpreted 4th order high frequency sequences are regionally 

continuous, but thin from west to east (strike direction). These sequences 

also demonstrate progressive thinning towards the north and thickening 

towards the south (dip direction). Three-dimensional modeling results show 

that the Mississippian section was deposited as a series of low-relief, 

southward prograding wedges on a gently sloping surface.  

8. Primary reservoir quality porosity values show a correlation, although weak, 

to depositional facies and position within the stratigraphic framework. Facies 

1 (average porosity of 9.5% and permeability of 0.358 mD) and Facies 5 

(average porosity of 3.3% and permeability of 0.049 mD) possess the highest 
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reservoir quality, whereas Facies 4 and Facies 2 act as seals that 

compartmentalize reservoir units. Overall, high frequency Sequence 3 

possesses the highest reservoir potential. 
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Colors described from core relate to the standardized color chart key (Table 4), 

which has been abbreviated from the rock-color chart developed by the Rock-Color 

Chart Committee (1970). Locations of thin section samples are indicated by “TS” below 

each written description. Descriptions of the degree of bioturbation refer to the 

bioturbation index from Bann et al., 2008 (Table 5).  

 

 

Table 4. Rock-Color Chart listing color names and associated numerical designations. 
Modified from Goddard et al., 1951. 
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Table 5. Bioturbation index used for written and illustrative core descriptions. Modified 
from Bann et al., 2008.  
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Table 6. Fracture density chart used for written and illustrative core descriptions. Letters 

A-D correspond to the number of fractures per foot.  

  



141 
 

Core #1: Adkisson #1-33 SWD – Devon Energy 
Logan County, OK 
Cored Interval: 5827.0’-5485.0’ 
Examined Interval: 5819.9’-5496.2’ 
Top “Mississippian Limestone”: 5819.9’ (from core) 
Formations: Woodford Shale, “Mississippian Limestone”, and Pennsylvanian 
 

5819.9’ – 5816.2’ = Facies #1. Glauconitic sandstone. Dark gray and greenish black. 
Contact between Woodford Shale and “Mississippian Limestone” at 5819.9’. 
Abundant bioturbation. Very fine sand-sized glauconite grains. Very fine sand-
sized pyrite crystals grading into very coarse sand-sized crystals (~30%) from 
base to top of interval. Scattered, grayish black chert nodules throughout the 
interval (~1 inch in diameter). No visible porosity or oil staining (or fluorescence 
under ultraviolet light) in hand sample.  

 
 TS 5819.8’ 
 
5816.2’ – 5799.0’ = Facies #3 and #2. Bioturbated wackestones and occasional 

packstones with intermittent burrowed calcareous mudstones. Olive gray, light 
olive gray, olive black, and yellowish gray. Generally uncommon to moderate 
bioturbation, but some intervals are abundantly bioturbated (5810’-5805’ and 
5800’-5898’). Silty and sandy wackestones present. Intervals of burrowed 
calcareous mudstone facies (approximately 0.15’ thick) at 5813.5’, 5810.3’, and 
5801.1’. Scattered, visible very coarse sand-sized crinoid fragments and coarse to 
very coarse sand-sized pyrite crystals throughout interval (<5%). Brachiopod 
fragments (~0.5-1 inch) visible at 5807.5’. Sparse vertical to sub-vertical fractures 
ranging in length from 0.4’ to 0.1’ that are partially to completely cemented with 
calcite. Porosity visible within partially cemented vertical fractures. Oil staining 
and fluorescence under ultraviolet light observed in moderately bioturbated 
zones (5810’, 5808’, 5806’, and 5802.5’), vertical fracture at 5807’, and 
brachiopod fragments at 5807.5’.  

 
 TS 5810.4’ 

TS 5807.75’ 
 TS 5801.4’ 
 
5799.0’ – 5797.3’ = Facies #5. Bioturbated skeletal packstone to grainstone. Olive gray, 

light olive gray, brownish black, and grayish orange. Common to moderate 
bioturbation. Heavily fractured with most fractures occurring as partially filled 
vertical fractures (approximately 0.2’ long). Porosity visible in partially cemented 
fractures. Oil staining and fluorescence under ultraviolet light observed 
throughout the interval and concentrated in lighter-colored, grainier intervals 
and fractures. No visible skeletal fragments in hand sample.  
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 TS 5797.55’ 
 
5797.3’ – 5757.9’ = Facies #3. Bioturbated wackestones. Olive gray, light gray, dusky 

yellowish brown, brownish black, and brownish gray. Sparsely to moderately 
bioturbated. Coarse to very coarse sand-size crinoid fragments (~1mm) scattered 
throughout entire interval. Deposits are more thinly bedded at the base of the 
interval (5797.3’-5776’) and transition upward into thicker or massively bedded 
deposits. Wispy laminations observed throughout interval. Overall low degree of 
fracturing. Faint oil staining and fluorescence under ultraviolet light observed 
near the base of the interval.  

 
 TS 5786.5’ 

TS 5775.0’ 
TS 5770.6’ 
TS 5763.15’ 
TS 5760.6’ 

 
5757.9’ – 5757.6 = Facies #1. Glauconitic sandstone. Dark gray and greenish black. 

Abundant bioturbation. Glauconite grains concentrated in burrows. Very fine 
sand-sized glauconite grains and coarse sand-sized pyrite crystals. No visible 
porosity or oil staining (or fluorescence under ultraviolet light) in hand sample.  

 
 TS 5757.85’  
 
5757.6’ – 5754.8’ = Facies #2. Burrowed calcareous mudstone. Grayish black and olive 

black. Moderately bioturbated with mm-scale burrows throughout. Interval 
contains visible, scattered brachiopod fragments (1-2 cm) and coarse sand-sized 
crinoid fragments. No visible porosity or oil staining (or fluorescence under 
ultraviolet light) in hand sample. 

 
5754.8’ – 5742.0’ = Facies 3. Bioturbated wackestones with some intermittent 

burrowed calcareous mudstones. Olive gray, light gray, dusky yellowish brown, 
brownish black, and brownish gray. Moderately to commonly bioturbated. 
Overall low degree of fracturing, but some sub-vertical, filled fractures are 
present towards the top of the interval. Coarse sand-sized pyrite grains and 
crinoid fragments are observed in the uppermost intervals. Thin intervals of 
burrowed calcareous facies observed at 5751.1’ (0.1’ thick) and 5748.2’ (0.5’ 
thick). No visible porosity or oil staining (or fluorescence under ultraviolet light) 
in hand sample. 

 
 TS 5751.65’ 
 TS 5750.6’  
 TS 5749.0 
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 TS 5744.75’ 
 

5742.0’ – 5729.0’ = Facies #2 and #3. Burrowed calcareous mudstones and bioturbated 
wackestones. Olive gray, light olive gray, olive black, and yellowish gray. 
Generally sparse to uncommon bioturbation with some moderate bioturbation 
(5735.5’-5736.5’). Burrowed calcareous mudstone facies from 5742.0’-5738.3’ 
and 5734.0’-5731.8’. Coarse to very coarse sand-sized crinoid fragments and 
pyrite crystals and mm-scale burrows observed in burrowed calcareous 
mudstone intervals. Overall moderate degree of fracturing with most fractures 
occurring in the bioturbated wackestone facies. Very faint oil staining (and 
associated fluorescence under ultraviolet light) observed in the bioturbated 
wackestone facies.  

 
 TS 5737.85’ 
 TS 5735.0’ 

 
5729.0’ – 5725.7’ = Facies #4 and #5. Interbedded peloidal and skeletal grainstones. 

Dark gray, medium gray, brownish black, light olive gray, and dark yellowish 
brown. Some intervals of silty to sandy grainstones present. Most of the interval 
is not bioturbated, but a thin bioturbated interval occurs at 5727.0’. Few 
fractures are observed throughout this interval. Heavy oil staining observed in 
skeletal grainstone facies at the base of the interval with a lesser degree of oil 
staining observed in the peloidal grainstone facies interval just above.  

 
 TS 5728.8’ 
 TS 5727.5’  
 TS 5725.75’  

 
5725.7’ – 5722.3’ = Facies #3. Bioturbated wackestone. Olive gray, olive black, and 

medium dark gray. Wispy laminations scattered throughout interval. 
Characterized by uncommon bioturbation and a moderate degree of fracturing. 
No visible porosity or oil staining in hand sample. Minor occurrences of 
fluorescence under ultraviolet light in fractures at 5723.2’.  

 
5722.3’ – 5721.1’ = Facies #2. Burrowed calcareous mudstone. Grayish black and olive 

black. Scattered very coarse sand-sized crinoid fragments and brachiopods (1-2 
cm) scattered throughout interval. Uncommon bioturbation. No fractures were 
observed in this interval. No visible porosity or oil staining (or fluorescence under 
ultraviolet light) in hand sample. 

 
 TS 5722.0-5722.25’ 

 
5721.1’ – 5717.3’ = Facies #3. Bioturbated wackestone. Olive gray, olive black, and 

medium dark gray. Very coarse sand-sized crinoid fragments are scattered 
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throughout interval. Uncommon to moderate bioturbation. Moderate degree of 
fracturing. Porosity observed in partially filled fractures. Oil staining and 
fluorescence under ultraviolet light is observed in fractures at 5718.4’-5719.4’. 

 
 TS 5718.55’ 
 TS 5717.5’ 

 
5717.3’ – 5714.0’ = Facies #2 and #3. Burrowed calcareous mudstones and bioturbated 

wackestones. Olive gray, light olive gray, olive black, grayish black, and medium 
dark gray. Sparse bioturbation. No fractures observed in this interval. No visible 
skeletal fragments of oil staining (or fluorescence under ultraviolet light) 
observed.  

 
5714.0’ – 5703.6’ = Facies #5 and #4. Traction current skeletal packstones and 

grainstones and massive bedded peloidal grainstones. Dark gray, medium gray, 
brownish black, light olive gray and dusky yellowish brown. Some silty and sandy 
grainstones are present. Bioturbation absent. Low to moderate degree of 
fracturing observed throughout this interval. Fractures are vertical to sub-vertical 
(~0.3’ long) and are partially filled with calcite cement. Heavy oil staining and 
fluorescence under ultraviolet light observed from 5710.6’-5706.3’. No visible 
skeletal fragments in hand sample.  

 
 TS 5712.55’ 
 TS 5709.65’ 
 TS 5707.5’ 
 TS 5705.3’ 
 TS 5704.45 

 
5703.6’ – 5696.1’ = Facies #3 and #2. Bioturbated wackestones and burrowed 

calcareous mudstones. Olive gray, light olive gray, olive black, grayish black, 
black, and medium dark gray. Brachiopod fragment (1 cm) visible in hand 
sample. Interval transitions from dark mudstone facies at the base to 
interbedded dark and light mudstone and wackestone facies towards the top. 
Sparse to uncommon bioturbation. Some fractures observed at the top of the 
interval. Porosity visible in partially filled fractures. No oil staining observed. Very 
faint fluorescence under ultraviolet light in bioturbated wackestone facies. 

 
 TS 5701.65’ 
 TS 5701.3-5701.55’ 
 TS 5697.5’ 

 
5696.1’ – 5673.8’ = Facies #5 and #4. Interbedded skeletal and peloidal packstones and 

grainstones. Dark gray, medium gray, medium dark gray, brownish black, light 
olive gray, light gray, and dusky yellowish brown. Silty and sandy grainstones 
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present. Very fine pyrite granules (2-4 mm) and coarse sand-sized pyrite grains 
observed from 5686’-5682’. Cross-bedding and truncation surfaces occur 
throughout interval. Bioturbation is absent throughout most of the interval with 
some zones of sparse and uncommon bioturbation. The entire interval shows at 
least some degree of fracturing with some zones showing a high to very high 
degree of fracturing. Heaviest oil staining and fluorescence under ultraviolet light 
is observed at the base of the interval, with faint fluorescence under ultraviolet 
light occurring throughout the rest of the interval. No visible skeletal fragments 
in hand sample.  

 
 TS 5691.1’ 
 TS 5688.85’ 
 TS 5687.5’ 
 TS 5683.4’ 
 TS 5678.35’ 
 TS 5676.7’ 

 
5673.8’ – 5652.8’ = Facies #3, #4, and #5. Bioturbated wackestones with intermittent 

massive bedded peloidal wackestones and traction current skeletal 
grainstones. Dark gray, medium gray, medium dark gray, brownish black, light 
olive gray, light gray, and dusky yellowish brown. Mostly moderately to 
commonly bioturbated wackestones with wispy laminations and very coarse 
sand-sized pyrite crystals. Moderately bioturbated skeletal grainstone and 
moderately to uncommonly bioturbated peloidal wackestones are interbedded 
with bioturbated wackestones. Entire interval displays some degree of fracturing 
with factures being most abundant from 5666’-5660’. No visible skeletal 
fragments in hand sample. Faint oil staining (and fluorescence under ultraviolet 
light) is observed throughout the interval.  

 
 TS 5673.25 
 TS 5669.7’ 
 TS 5666.2’ 
 TS 5663.75’ 
 TS 5657.1’ 
 TS 5654.8’ 

 
5652.8’ – 5635.0’ = Facies #5 and #4. Traction current skeletal grainstones interbedded 

with massive bedded peloidal packstones and grainstones. Light olive gray, 
moderate yellowish brown, dusky yellowish brown, medium gray, medium dark 
gray, and light gray. Very coarse sand-sized pyrite crystals observed in the lower 
half of the interval. Intervals of moderately bioturbated packstones occur 
throughout. Overall low degree of fracturing. No skeletal fragments visible in 
hand sample. Faint oil staining and fluorescence under ultraviolet light is 
observed in the upper portion of the interval.  
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 TS 5648.65’ 
 TS 5646.65’ 
 TS 5641.8’ 
 TS 5638.5’ 
 TS 5635.9’ 

 
5635.0’ – 5630.0’ = Facies #3. Bioturbated mudstone to wackestone. Olive gray, dusky 

yellowish brown, grayish black, and dark yellowish brown. Uncommon to 
moderate bioturbation. Moderate degree of fracturing. Lower half of the interval 
is thinly bedded and darker in color than upper half. Medium sand-sized pyrite 
crystals observed near the top of the interval. Oil staining and fluorescence 
under ultraviolet light observed at 5634.5’.   

 
 TS 5634.65’ 
 TS 5630.75’ 

 
5630.0’ – 5606.2’ = Facies #5 and #4. Traction current skeletal packstones and 

grainstones interbedded with massive bedded peloidal grainstones. Light olive 
gray, moderate yellowish brown, dusky yellowish brown, medium gray, medium 
dark gray, olive gray, dark yellowish orange, and light gray. Sandy and silty 
grainstones. Cross bedding and traction current features observed throughout 
interval. Bioturbation is absent throughout most of the interval with some 
sparsely bioturbated zones present. Entire interval is heavily fractured (0.2’ to 
0.6’ in length). Heavy oil staining and fluorescence under ultraviolet light is 
observed in traction current skeletal grainstone facies and partially filled vertical 
fractures. No visible skeletal fragments in hand sample.  

  
 TS 5628.5’ 
 TS 5624.2’ 
 TS 5616.95’ 
 TS 5614.5’ 
 TS 5610.75’ 
 TS 5606.4’ 

 
5606.2’ – 5592.7’ = Facies #3, #4, and #5. Bioturbated wackestones and packstones 

with interbedded traction current skeletal grainstones and massive bedded 
peloidal packstone facies. Dark gray, medium gray, medium dark gray, brownish 
black, light olive gray, light gray, and dusky yellowish brown. Moderate 
bioturbation observed in bioturbated wackestones and packstones with 
bioturbation absent in skeletal grainstone and peloidal packstone facies. Highest 
degree of fracturing observed in grainier intervals. Oil staining and fluorescence 
under ultraviolet light occurs in skeletal grainstone interval. No visible skeletal 
fragments in hand sample.  
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 TS 5505.5’ 
 TS 5599.4’ 
 TS 5596.8’ 
 TS 5592.7’ 

 
5592.7’ – 5564.20’ = Facies #2 and #3. Interbedded burrowed calcareous mudstones 

and bioturbated wackestones. Olive black, olive gray, brownish black, and 
grayish black. Burrows, brachiopod fragments (1-2 cm), and coarse to very 
coarse sand-sized pyrite crystals are scattered throughout the entire interval. 
Skeletal debris beds observed at 5591.8’, 5590.1’, and 5581.7’. Overall low 
degree of fracturing, but, where present, fractures appear to be completely or 
partially filled. Sparse to moderate bioturbation. No oil staining or fluorescence 
under ultraviolet light observed in hand sample. 

  
 TS 5584.8’ 
 TS 5581.7’ 
 TS 5581.55-5581.80’ 
 TS 5574.35’ 
 TS 5569.65-5569.95’ 

 
5564.20’ – 5537.0’ = Facies #5 and #4. Traction current skeletal grainstones 

interbedded with massive bedded peloidal grainstones. Light olive gray, 
moderate yellowish brown, dusky yellowish brown, medium gray, medium dark 
gray, olive gray, dark yellowish orange, and light gray. Silty grainstones present. 
Wispy laminations and cross-bedding present throughout. Bioturbation is absent 
throughout most of the interval with occasional zones having sparse or 
uncommon bioturbation. Fractures present throughout entire interval. 

 
 TS 5559.5’ 
 TS 5556.05’ 
 TS 5546.55’ 
 TS 5546.1’ 
 TS 5544.65’ 

 
5537.0’ – 5523.0’ = Facies #3. Bioturbated wackestones and packstones. Olive gray, 

dusky yellowish brown, and grayish black. Thinly bedded bioturbated 
wackestones and packstones with wispy laminations. Some silty wackestones 
and packstones present. Bioturbation ranges from absent to moderate. 
Abundant partially filled fractures are present throughout the entire interval. 
Faint oil staining and fluorescence occurs throughout entire interval. No skeletal 
fragments visible in core.  

 
 TS 5536.6’ 
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 TS 5536.0’ 
 TS 5532.1’ 
 TS 5527.8’ 
 TS 5526.05’ 
 TS 5524.65-5524.90’ 

 
5523.0’ – 5517.7’ = Facies #4 and #5. Interbedded peloidal and skeletal grainstones. 

Light olive gray, moderate yellowish brown, dusky yellowish brown, medium 
gray, medium dark gray, olive gray, dark yellowish orange, and light gray. 
Bioturbation absent to sparse. Sparse, but large, fractures observed throughout 
interval (~0.5’ long). Cross-bedding and wispy laminations observed in skeletal 
grainstones. Heavy oil staining and fluorescence under ultraviolet light present in 
skeletal grainstone facies. No skeletal fragments observed in hand sample. 

 
 TS 5520.1’ 

 
5517.7’ – 5510.6’ = Facies #3 and #2. Bioturbated wackestones and burrowed 

calcareous mudstones. Olive black, brownish black, and grayish black. Scattered 
coarse to very coarse sand-sized crinoid fragments. Brachiopod fragments (1-2 
cm) concentrated in mudstone facies. Glauconite grains observed at the base of 
the interval. Sparse to moderate bioturbation. Very few fractures observed 
throughout interval. No oil staining or fluorescence under ultraviolet light 
observed in hand sample. 

 
 TS 5517.75’ 
 TS 5516.1’ 
 TS 5512.00-5512.25’  

 
5510.6’ – 5496.2’ = Facies #5 and #4. Interbedded traction current skeletal and 

massive bedded peloidal grainstones. Moderate yellowish brown, yellowish 
gray, very light gray, light gray, light olive gray, brownish black, and dark 
yellowish orange. Bioturbation generally absent, but some thin intervals of 
uncommon bioturbation are present. Cross-bedding and wispy laminations are 
observed in skeletal grainstones facies. Fractures are observed throughout the 
entire interval with the majority of the interval being heavily fractured. Oil 
staining is observed throughout the interval with the heaviest oil staining, and 
fluorescence, occurring at 5507’. The contact between the “Mississippian 
Limestone” and the overlying Pennsylvanian sediments occurs at 5496.2’.  

 
 TS 5509.1’ 
 TS 5507.9’ 
 TS 5506.1’ 
 TS 5504.25’ 
 TS 5501.65’  
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 TS 5498.45’ 
 TS 5496.7’ 
 TS 5496.1’ – Pennsylvanian 
 TS 5495.2’ – Pennsylvanian  
 TS 5491.4’ – Pennsylvanian  
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Core #2: Winney #1-18 SWD – Devon Energy 
Payne County, OK 
Cored Interval: 5401.95’-5115.0’ 
Examined Interval: 5125.0’-5313.0’ 
Top “Mississippian Limestone”: 5123.4’ (from core) 
Formations: Woodford Shale, “Mississippian Limestone”, and Pennsylvanian 
 

5313’ - 5312.2’ = Facies #1. Glauconitic Sandstone. Dark gray and greenish black. 
Contact between Woodford Shale and “Mississippian Limestone” at 5313’. 
Abundant bioturbation. Glauconite appears to be concentrated in burrows. Very 
fine sand-sized glauconite grains. Interbedding of glauconitic sandstone with 
Facies #2 (burrowed calcareous mudstone) from 5313’ to 5312.8’. Very fine 
sand-sized pyrite crystals grading into very coarse sand-sized crystals (~30%) 
from base to top of interval. Brachiopods (~0.5 cm in length) present along 
bedding plane at 5312.3’. No visible porosity or oil staining (or fluorescence 
under ultraviolet light) in hand sample.  

 
 TS 5312.75’-5312.95’ 
 
5312.2’ – 5292.65’ = Facies #2 and #3. Burrowed calcareous mudstones and 

bioturbated mudstones to packstones. Olive gray, light olive gray, olive black, 
and yellowish gray. Generally sparse to common bioturbation, but some 
intervals contain abundant bioturbation. Bioturbated wackestones and 
packstones interbedded with burrowed calcareous mudstone facies 
(approximately 0.15’ thick) at 5308.7’, 5307.6’, 5303.75’, 5301.3’, 5300.55’, 
5298.25’, 5297’, and 5295.55’. Scattered, visible very coarse sand-sized crinoid 
fragments throughout interval (<5%). Medium sand-sized pyrite crystals present 
at 5305’. Sparse vertical to sub-vertical fractures ranging in length from 2.0’ to 
0.2’ that are partially to completely cemented with calcite. Porosity within 
partially cemented vertical fractures. Fluorescence under ultraviolet light 
observed in bioturbated zones and vertical fractures from 5310’-5303’.  

 
 TS 5309.60’ 

TS 5305.35’ 
 TS 5298.45’ 
 
5292.65’ – 5292.4’ = Facies #1. Glauconitic Sandstone. Dark gray and greenish black. 

Very fine sand sized glauconite grains decreasing in abundance upwards showing 
a gradational contact between this facies and the overlying facies. Sparse 
bioturbation. No fractures observed. No visible skeletal fragments, porosity, or 
oil staining (or fluorescence under ultraviolet light) in hand sample.  

 
 TS 5292.60’ 
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5292.4’ – 5269.1’ = Facies #2 and #3. Burrowed calcareous mudstones interbedded 
with bioturbated mudstones to wackestones and packstones. Black, grayish 
black, olive black, olive gray, dusky yellowish brown, and moderate yellowish 
brown. Primarily moderately to abundantly bioturbated mudstones and 
wackestones interbedded with less frequent, thinner (approximately 1.0’ thick) 
intervals of moderately burrowed calcareous mudstones at 5292’, 5290.8’, 
5281’, and 5280’. Interval contains scattered, visible brachiopod fragments 
(~10%) ranging from 1.5-2.0 cm in length. Occasional vertical fractures (average 
0.2’ long) and sparse sub-vertical calcite-filled ptygmatic factures (average 0.3’ 
long) present in bioturbated intervals. Fine sand-sized pyrite crystals around 
clasts at 5280.6’. Fracture porosity observed in partially filled fractures. No 
visible skeletal fragments or oil staining in hand sample. Some fluorescence in 
bioturbated intervals and vertical fractures. 

 
 TS 5289.55’ 
 TS 5285.55’ 
 TS 5282.80’ 
 TS 5279.85’  
 TS 5274.60’ 
 TS 5270.50’ 
 
5269.1’ – 5262.3’ = Facies #3, #4, and #5. Bioturbated wackestones interbedded with 

massive bedded peloidal and traction current skeletal packstones to 
grainstones. Olive gray, dusky yellowish brown, brownish black, dark yellowish 
brown, and moderate yellowish brown. Bioturbated (uncommon) wackestones 
interbedded with massively bedded silty to sandy packstones. Commonly 
bioturbated at the top of this interval with burrows approximately 4mm in 
diameter. Thin (<0.1’ thick) intervals of Facies #1 present throughout. Marine 
hardgrounds. Abundant fractures. Sub-vertical fractures occur at the base of the 
interval whereas vertical, partially filled fractures (average 0.7’ long and 1mm 
thick) occur in the grainier facies. Porosity observed in partially filled fractures. 
Skeletal fragments visible in hand sample. Fluorescence under ultraviolet light 
observed throughout interval, but concentrated in massive bedded packstone to 
grainstone facies and vertical, partially open fractures.  

 
 TS 5268.60’ 
 TS 5263.90’ 
 TS 5262.30’ 
 
5262.3’ – 5261.65’ = Facies #2. Burrowed calcareous mudstone. Black, grayish black, 

olive black, and brownish black. Thin-shelled brachiopod fragments (~2 cm long) 
present at the base of the interval. Mm-scale laminations and burrows exist 
throughout. Abundant fractures. Moderate bioturbation. No observed porosity 
or oil staining (or fluorescence under ultraviolet light) in hand sample. 
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5261.65’ – 5257.5’ = Facies #3 and #4. Bioturbated wackestones to packstones and 

massive bedded peloidal packstones to grainstones. Olive gray, dusky yellowish 
brown, and dark yellowish brown. Common to abundant bioturbation in 
wackestones and packstones with some massive bedded packstones and 
grainstones present. Abundant, partially filled vertical fractures (approximately 4 
cm long). No skeletal fragments visible in hand sample. Oil staining from 5259’-
5259.2’ and 5265.3’-5265.6’. Fluorescence under ultraviolet light observed 
within vertical fractures and bioturbated zones. 

 
 TS 5260.10’ 
 TS 5258.50’ 
 
5257.5’ – 5248.3’ = Facies #2 and #3. Burrowed and bioturbated mudstones to 

wackestones. Olive black, olive gray, brownish black, and grayish black. 
Uncommonly bioturbated mudstones and wackestones. Few (<5%) scattered 
crinoid fragments (~1mm) present at the base of the interval. Sparse ptygmatic 
fractures (ranging from 0.2’-0.6’ long) observed throughout the interval. No 
visible porosity or oil staining (or fluorescence under ultraviolet light) observed 
in hand sample.  

 
 TS 5253.80’-5254.00’ 
 TS 5249.75’ 
 
5248.3’ – 5208.95’ = Facies #4 and #5. Massive bedded peloidal packstones to 

grainstones interbedded with traction current skeletal grainstones. Dark gray, 
medium gray, brownish black, light olive gray and dark yellowish brown. 
Dominantly silty and sandy traction current grainstones showing cross bedding. 
Intervals of silty and sandy massive bedded packstones to grainstones occur 
throughout this interval. Abundant, partially filled vertical fractures occur 
throughout this interval (average 0.5’ long). Moderately bioturbated and/or 
vertically burrowed hardgrounds present at 5236.4’, 5233.9’, 5233.1’, 5231.15’, 
5225.1’, 5222.8’, 5221.85’, 5219.5’, and 5217.4’. No visible skeletal fragments in 
hand sample. Porosity observed in partially filled vertical fractures. Oil staining 
observed throughout interval. Fluorescence under ultraviolet light observed 
mostly in Facies #5 and vertical fractures, but also seen in bioturbated and/or 
burrowed hardgrounds throughout interval. 

 
 TS 5212.55’-5215.75’ 
 TS 5243.00’ 
 TS 5239.30’ 
 TS 5238.65’ 
 TS 5234.60’ 
 TS 5233.90’ 
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 TS 5232.90’ 
 TS 5229.75’ 
 TS 5229.35’ 
 TS 5225.50’ 
 TS 5222.85’ 
 TS 5219.75’ 
 
5208.95’ – 5208.1’ = Facies #2. Burrowed calcareous mudstone. Black, grayish black, 

and brownish black. Abundant mm-scale laminations and sparse burrows. Sparse 
fractures. No visible skeletal fragments, porosity, or oil staining (or fluorescence 
under ultraviolet light) in hand sample.  

 
5208.1’ – 5204.8’ = Facies #4 and #5. Massive bedded peloidal packstones and 

grainstones interbedded with traction current skeletal grainstones. Dark gray, 
dark yellowish brown, dusky yellowish brown, medium gray, and olive black. 
Cross bedding observed in traction current grainstone facies. Occasional (<5%) 
scattered crinoid fragments (~2 mm) observed throughout interval. Vertical to 
sub-vertical open and partially filled fractures are common. Bioturbation absent. 
Porosity observed in open and partially filled fractures. Oil staining (and 
fluorescence under ultraviolet light) observed at the base of the interval in 
traction current grainstone facies. 

 
 TS 5207.50’ 
 TS 5205.30’ 
 
5204.8’ – 5202.8’ = Facies #2 and #3. Burrowed calcareous mudstones and bioturbated 

mudstones to wackestones. Black, grayish black, brownish black, olive gray, and 
olive black. Mm-scale laminations and burrows exist throughout this interval. 
Brachiopod fragments at 5203.8’. Mm-scale laminated and burrowed mudstones 
grade into commonly bioturbated mudstones and wackestones. Sparse 
fractures. No visible porosity or oil staining (or fluorescence under ultraviolet 
light) in hand sample.  

 
5202.8’ – 5167.6’ = Facies #4, #5, and #2. Traction current skeletal grainstones 

interbedded with massive bedded peloidal packstones and grainstones and 
occasional mm-scale laminated mudstones. Dark gray, dark yellowish brown, 
dusky yellowish brown, medium gray, and olive black. Dominantly sandy and silty 
cross-bedded and massive bedded packstones and grainstones. Mm-scale 
laminated and moderately burrowed mudstones (approximately .01’ thick) occur 
at 5176.75’, 5174.85’, and 5171.8’. Abundant filled and partially filled vertical 
fractures throughout ranging from 0.2’-2.0’ long. Porosity observed within the 
partially filled vertical fractures. No skeletal fragments observed in hand sample. 
Oil staining and abundant fluorescence observed throughout interval and 
concentrated in Facies #5 and vertical fractures.  
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 TS 5199.80’ 
 TS 5198.75’ 
 TS 5190.10’ 
 TS 5187.90’ 
 TS 5186.65’ 
 TS 5184.15’ 
 TS 5182.25’ 
 TS 5179.80’ 
 TS 5179.15’ 
 TS 5177.95’ 
 TS 5177.90’ 
 TS 5176.35’ 
 TS 5170.15’ 

 
5167.6’ – 5165.0’ = Facies #2. Burrowed calcareous mudstone. Black, grayish black, 

brownish black, and olive black. Mm-scale laminated and sparsely burrowed 
mudstone containing thin-shelled brachiopods (<5%) approximately 1 cm long. 
No visible porosity or oil staining (or fluorescence under ultraviolet light) in hand 
sample. 

 
 TS 5166.35’-5166.55’ 
 
5165.0’ – 5163.4’ = Facies #3 and #5. Bioturbated mudstones to wackestones and 

traction current skeletal grainstones. Olive gray, brownish black, and olive black. 
Uncommonly to moderately bioturbated mudstones and wackestones present in 
between cross-bedded grainstones. Moderate abundance of vertical, partially 
filled fractures. Minor fluorescence under ultraviolet light in vertical fractures. 
No visible skeletal fragments in hand sample.  

 
5163.4’ – 5152.2’ = Facies #2/3. Burrowed calcareous mudstone to wackestone and 

bioturbated mudstone to wackestone. Black, grayish black, brownish black, 
olive black, and olive gray. Mm-scale laminated mudstone to wackestone 
containing brachiopods (~10%) that range in size from 1-3 cm. Abundant sub-
vertical filled fractures (average 0.1’ long) from 5158’-5157’. Fractures are 
otherwise sparse. Moderate to common bioturbation. No visible porosity or oil 
staining (or fluorescence under ultraviolet light) in hand sample.  

 
 TS 5161.70’ 
 TS 5159.85’ 

TS 5158.70’-5158.90’ 
TS 5157.25’ 
TS 5155.65’ 

 TS 5153.80’-5154.00’ 
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 TS 5152.90’ 
 
5152.2’ – 5146.3’ = Facies #4 and #5. Massive bedded packstones with some traction 

current grainstones. Olive gray with some olive black. Silty packstones with 
occasional mm-scale laminated mudstone facies (approximately 0.1’ thick) 
occurring throughout. Fractures are common. Partially filled ptygmatic and 
vertical fractures (0.5’ long) at 5149’. Porosity observed in partially filled 
fractures. Bioturbation absent. No visible skeletal fragments or oil staining in 
hand sample. Fluorescence under ultraviolet light in ptygmatic and vertical 
fractures.  

 
 TS 5149.80’ 
 TS 5148.40’ 

 
5146.3’ – 5145.4’ = Facies #5 and #2. Skeletal grainstones interbedded with laminated 

mudstones. Olive black and olive gray. Abundance of laminated mudstones 
interbedded within traction current grainstones. Cross bedding observed in 
traction current grainstone facies (Facies #5). One filled ptygmatic fracture .03’ 
long. Bioturbation absent. No skeletal fragments or porosity visible in hand 
sample. Oil staining (and fluorescence under ultraviolet light) observed in hand 
sample. 

 
 TS 5145.90’ 
 
5145.4’ – 5143.5’ = Facies #2. Calcareous mudstone. Black, grayish black, brownish 

black, and olive black. Mm-scale laminated mudstone containing thin-shelled 
brachiopods (~5%) approximately 1 cm long. Fractures are sparse. Bioturbation 
absent. No visible porosity or oil staining (or fluorescence under ultraviolet light) 
in hand sample. 

 
 TS 5144.75’-5145.00’ 
 TS 5144.00’-5144.20’ 
 
5143.5’ – 5133.85’ = Facies #4 and #5. Massive bedded peloidal packstones and 

grainstones interbedded with traction current skeletal grainstones. Dark gray, 
dark yellowish brown, dusky yellowish brown, medium gray, and olive black. Low 
angle cross bedding observed in the traction current grainstone facies. Scattered 
mud wisps throughout interval. Sparsely to moderately fractured consisting of 
vertical, partially filled fractures (generally about 1.0’ long) and calcite filled 
fractures. Bioturbation absent. Porosity observed in partially filled vertical 
fractures. No skeletal fragments visible in hand sample. Facies #5 and vertical 
fractures are highly fluorescent under ultraviolet light. 

 
 TS 5140.25’ 
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 TS 5139.15’ 
 TS 5138.35’ 
 TS 5136.60’ 
 TS 5134.25’ 
 
5133.85’ – 5133.45’ = Facies #2. Burrowed calcareous mudstone. Black, grayish black, 

brownish black, and olive black. Mm-scale laminated and burrowed mudstone. 
Sparsely fractured. Sparse bioturbation. No visible skeletal fragments, porosity, 
or oil staining (or fluorescence under ultraviolet light) in hand sample. 

 
 TS 5133.60’-5133.80’ 
 
5133.45’ -5124.7’ = Facies #4 and #5. Massive bedded peloidal packstones and 

grainstones interbedded with traction current skeletal grainstones. Light olive 
gray, moderate yellowish brown, medium gray, and medium dark gray. 
Dominantly composed of low- angle, cross-bedded grainstone facies. Scattered 
mud wisps throughout interval. Moderate to abundant vertical, partially filled 
fractures (generally about 1.0’ long) and calcite filled fractures. Porosity 
observed in partially filled vertical fractures. Bioturbation absent. No skeletal 
fragments visible in hand sample. Heavy oil staining and fluorescence under 
ultraviolet light throughout interval. 

 
 TS 5132.75’ 
 TS 5132.25’ 
 TS 5131.75’ 
 TS 5129.70’ 
 TS 5129.30’ 
 TS 5127.35’ 
 TS 5126.80’ 
 TS 5126.40’ 
 
5124.7’ – 5123.4’ = Facies #5. Chert-rich grainstone. Moderate yellowish brown, 

yellowish gray, very light gray, light gray, brownish black, dark yellowish orange, 
and grayish yellow green. Cherty grainstone showing exposure features and 
some iron-rich areas around fractures. Abundant fractures. Bioturbation absent. 
No visible skeletal fragments or porosity in hand sample. Oil staining and 
fluorescence under ultraviolet light observed throughout interval. Contact with 
the “Mississippian Limestone” and overlying Pennsylvanian sediments at 
5123.4’.  

 
 TS 5124.55’ 
 TS 5124.10’ 
 TS 5123.70’  
 TS 5123.20’ – Pennsylvanian  
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Core #3: Elinore #1-18 SWD – Devon Energy 
Payne County, OK 
Cored Interval: 4481.7’ – 4324.0’  
Examined Interval: 4480.5’ – 4338.5’  
Top “Mississippian Limestone”: 4338.5’ (from core) 
Formations: Woodford Shale, “Mississippian Limestone”, and Pennsylvanian 
 
4481.7’ – 4481.0’ = Facies #1. Glauconitic sandstone. Dark gray and greenish black. Contact 

between Woodford Shale and “Mississippian Limestone” at 4481.7’. Abundant 
bioturbation. Coarse to very coarse sand-sized pyrite crystals. Dark yellowish orange 
nodules present at the base of the interval (~1 inch in diameter). No visible porosity, 
fractures, or oil staining (or fluorescence under ultraviolet light) observed in hand 
sample.  

 
 TS 4481.5’ 
 
4481.0’ – 4479.5’ = Facies #3. Bioturbated wackestone. Olive gray and olive black. Abundant 

bioturbation. Few scattered brachiopod fragments (< 1 cm) and coarse sand-sized 
crinoid fragments. Gradual transition upwards into the overlying glauconitic sandstone 
facies. No fractures, porosity, or oil staining (or fluorescence under ultraviolet light) 
observed in hand sample.  

 
 TS 4480.5’ 
 
4479.5’ – 4479.1’ = Facies #1. Glauconitic sandstone. Dark gray and greenish black. Abundant 

bioturbation. Sand-sized glauconite grains concentrated within cm-scale burrows. Fine 
to very coarse sand-sized pyrite crystals present. Scattered, grayish black chert nodules 
throughout the interval (~1 inch in diameter). No fractures, porosity, or oil staining (or 
fluorescence under ultraviolet light) observed in hand sample.  

 
 TS 4479.4’ 
 
4479.1’ – 4477.7’ = Facies #2. Burrowed calcareous mudstone. Grayish black, greenish black, 

olive black, olive gray, and moderate yellowish brown. Abundant bioturbation and mm-
scale burrows. Scattered very coarse sand-sized crinoid fragments throughout interval. 
Moderate yellowish brown nodule (~2 cm) and bed at 4478.2’ (~1 cm thick). No 
fractures or oil staining (or fluorescence under ultraviolet light) observed in hand 
sample.  

 
4477.7’ – 4470.0’ = Facies #3 and #2. Bioturbated wackestones with some burrowed 

calcareous mudstones. Olive gray, light olive gray, grayish black, and olive black. Long 
(~3.5’ long) vertical fracture mostly filled with calcite cement showing multiple 
generations of fractures and terminating into wispy laminated burrowed calcareous 
mudstone facies at 4473.9’. Bioturbation decreases from base to top of interval. 
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Brachiopod fragments (1-2 cm) visible at 4472.7’. Moderate oil staining and 
fluorescence under ultraviolet light observed in bioturbated wackestones, with more 
intense fluorescence in fracture(s). 

 
 TS 4476.4’ 
 TS 4471.3’ 
 TS 4470.5’  
 
4470.0’ – 4466.3’ = Facies #2. Burrowed calcareous mudstone. Brownish black and grayish 

black. Common bioturbation. Thin shelled brachiopods (1-5 cm) scattered throughout 
interval. Coral (3 cm) at 4469.9’. Mm-scale burrows and laminations occur throughout. 
Burrow size increases upwards throughout interval as this facies gradually transitions 
into the overlying facies. No porosity or oil staining observed in hand sample, however 
very faint fluorescence under ultraviolet light occurs.   

 
4466.3’ – 4448.5’ = Facies #3 and #2. Bioturbated wackestones with some burrowed 

calcareous mudstones. Olive gray, brownish black, grayish black, and olive black. 
Wackestones with coarse to very coarse sand-sized crinoid fragments scattered 
throughout. Common bioturbation. Vertical, partially filled fractures (~0.6’ long) 
present. Thin bedding and wispy laminations occur at the top of the interval as it 
transitions relatively sharply into the overlying facies. Faint fluorescence under 
ultraviolet light throughout interval with more intense fluorescence in a fracture at 
4458.4’. No visible porosity observed in hand sample. 

 
 TS 4466.85’ 
 TS 4459.0’  
 
4448.5’ – 4404.0’ = Facies #5, #4 and #2. Traction current skeletal grainstones with 

intermittent intervals of massive bedded peloidal grainstones and some burrowed 
calcareous mudstones. Olive gray, dark yellowish brown, dusky yellowish brown, 
moderate yellowish brown, light olive gray, medium gray, and olive black. Bioturbation 
absent throughout most of the interval with some zones of sparse or uncommon 
bioturbation. Scattered mud whisps throughout. Overall high degree of fracturing 
characterized by fracture swarms and partially filled vertical to sub-vertical fractures 
(range in length from 0.2’ to 1.0’). Interval alternates between thick-bedded and thin 
bedded (4436.0’-4434.0’, 4426.0’-4425.0’, 4418.0’-4417.0’, and 4414.5’-4413.7’) zones. 
Thin intervals of burrowed calcareous mudstone facies occur from 4444.2’-4444.4’ and 
4433.5’-4433.6’. Siliceous grainstones present at the top of the interval. Oil staining, and 
fluorescence under ultraviolet light) observed throughout the interval in traction current 
skeletal grainstone facies. No oil staining, or fluorescence under ultraviolet light, 
observed in peloidal grainstones of burrowed calcareous mudstones. Porosity visible in 
partially filled vertical fractures. 

 
 TS 4446.55’ 
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 TS 4441.24’ 
 TS 4438.75’ 
 TS 4429.1’ 
 TS 4426.2’ 
 TS 4410.55 
 TS 4407.1’ 
 TS 4406.65’ 
 
4404.0’ – 4403.5’ = Facies #2 and #3. Burrowed mudstones and bioturbated wackestones. 

Olive gray and olive black. Uncommon bioturbation. Thin bedded, interbedded 
bioturbated mudstones and wackestones. Fairly high degree of fracturing. No skeletal 
fragments, porosity, or oil staining (or fluorescence under ultraviolet light) visible in 
hand sample.  

 
 TS 4403.0’ 
 
4403.5’ – 4393.75’ = Facies #5 and #4. Interbedded traction current skeletal and massive 

bedded peloidal grainstones. Olive gray, dark yellowish brown, dusky yellowish brown, 
moderate yellowish brown, light olive gray, medium gray, and olive black. Bioturbation 
absent throughout most of the interval with one zone of uncommon bioturbation from 
4400.0’-4401.0’. Fairly low degree of fracturing observed. Large, mostly filled vertical 
fracture at 4402’. Cross-bedding and truncation surfaces are observed throughout this 
interval. Oil staining and fluorescence under ultraviolet light is observed in the traction 
current skeletal grainstone facies. No skeletal fragments observed in hand sample. 
Minor amounts of porosity visible within partially filled vertical fractures. 

 
 TS 4398.8’ 
 TS 4395.0’ 
 
4393.75’ – 4390.0’ = Facies #2 and #3. Burrowed mudstones and bioturbated wackestones. 

Olive gray and olive black. Uncommon to moderate bioturbation. Low degree of 
fracturing. Mm-scale laminations present at the top of the interval. No skeletal 
fragments, porosity, or oil staining (or fluorescence under ultraviolet light) visible in 
hand sample.  

 
 TS 4393.5’  
 
4390.0’ – 4371.1’ = Facies #5 and #4. Interbedded traction current skeletal grainstones and 

massive bedded peloidal grainstones and packstones. Olive gray, dark yellowish brown, 
dusky yellowish brown, moderate yellowish brown, light olive gray, medium gray, and 
olive black. Cross-bedding observed in skeletal grainstone facies. Bioturbation absent 
with the exception of one thin (0.6’ thick) interval of bioturbated wackestone facies at 
4386.5’ and large (cm-scale) burrows at 4377.5’. Varying degrees of fracturing occurs 
throughout this interval, with some zones being heavily fractured. Significant oil staining 
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and fluorescence observed in traction current grainstone facies, burrows, and fractures. 
Visible porosity within partially filled vertical fractures. No visible skeletal grains 
observed in hand sample.  

 
 TS 4384.7’ 
 TS 4380.95’ 
 TS 4376.5’ 
 
4371.1’ – 4362.5’ = Facies #2 and #3. Burrowed calcareous mudstones and bioturbated 

wackestones. Olive gray, olive black, and brownish back. Sparse to moderate 
bioturbation with abundance decreasing upward. Wispy laminations and mm-scale 
burrows observed throughout. Brachiopod fragments (1-2 cm) visible at the base of the 
interval. Fractures observed in this interval appear to be almost completely filled. No oil 
staining, or fluorescence under ultraviolet light, observed in hand sample.  

 
4362.5’ – 4338.5’ = Facies #4 and #5. Interbedded traction current skeletal grainstones and 

massive bedded grainstones. Olive gray, dark yellowish brown, dusky yellowish brown, 
moderate yellowish brown, light olive gray, medium gray, and olive black. Abundance of 
silty and sandy grainstones. Bioturbation absent. Generally thick bedded, but thin 
bedded intervals occur from 4348.5’-4348.0’, 4347.5’-4345.5’, and 4343.5’-4345.0’. 
Abundant vertical fractures (average 0.5’ long) observed in this interval with general 
trends of 1) increased fractures in traction current grainstone facies and 2) an overall 
increase in fracture density from base to top. Oil staining and fluorescence under 
ultraviolet light observed in traction current skeletal grainstone facies and fractures. 
Visible porosity within partially filled vertical fractures.  

 
 TS 4362.35’ 
 TS 4354.3’ 
 TS 4353.9’ 
 TS 4349.9’ 
 TS 4345.5’ 
 TS 4341.9’ 
 TS 4340.25’ 
 TS 4338.5’  
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APPENDIX B 

ILLUSTRATIVE CORE DESCRIPTIONS 
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APPENDIX C 

WHOLE CORE PHOTOGRAPHS 
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 Core photographs are shown in white light and are labeled using the 

abbreviations outlined in the chart shown below. All cores are photographed in boxes 

that are 2 feet in length and are oriented with the shallowest depths at the top left of 

the image and the deepest depths at the bottom right. All scales are in feet with smaller 

dashes corresponding to tenths of a foot, not inches. To the left of each 2ft interval, 

facies types are displayed using a colored box. Facies colors correspond to idealized 

facies stacking pattern colors. The bottom and top of the “Mississippian Limestone” are 

marked using solid yellow lines. Fourth-order high frequency sequences are marked by a 

solid red line and 5th order high frequency cycles are marked by a dashed red line. 
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Core #1 

Adkisson #1-33 SWD 
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APPENDIX D 

THIN SECTION PHOTOMICROGRAPHS 
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 Thin section photomicrographs show magnified views of core samples. All 

samples are oriented with the horizontal core axis parallel with the long axis of the 

photomicrograph. Images are organized by well and show samples from deepest to 

shallowest. All samples are shown in plane polarized light (unless otherwise noted) and 

labeled using the key outlined below. Multiple photographs are shown for each thin 

section sample at different scales.  
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Core #1 

Adkisson #1-33 SWD 
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1AD – 5819.8’ = Glauconitic sandstone. Porosity (visual estimation): 10.0%. Visual 
estimation: 17% clays, 18% carbonates, and 65% other minerals. Sample contains silt-
sized quartz grains (20%), sand-sized glauconite grains (40%), and bone fragments (3%). 
Significant amounts of oil observed within sample. Intracrystalline porosity observed 
within dolomite crystals.  

500 µm 

200 µm 
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1AD – 5810.40’ = Silicified bioturbated wackestone. Sample is alizarin red stained and 

blue epoxy impregnated. Porosity (NCS): 0.1%. Permeability (Klinkenberg): <0.0001 mD. 

TOC: 0.18%. XRD: 1% clays (1% illite), 25% carbonates (20% calcite and 5% dolomite), 

and 74% other minerals (71% quartz, 2% potassium feldspar, and 1% plagioclase 

feldspar). Sample contains silt-sized quartz grains and undifferentiated microbioclastic 

debris. Some spicules have been replaced by calcite. 

500 µm 
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1AD – 5807.75’ = Calcareous bioturbated wackestone. Sample is alizarin red stained 

and blue epoxy impregnated. Porosity (NCS): 4.8%. Permeability (Klinkenberg): 0.016 

mD. TOC: 0.45%. XRD: 2% clays (1% illite and 1% mixed layer illite/smectite), 38% 

carbonates (21% calcite and 17% dolomite), and 60% other minerals (54% quartz, 3% 

potassium feldspar, 2% plagioclase feldspar, and 1% pyrite). Sample contains silt-sized 

quartz grains (50%), brachiopod fragments (5%), sponge spicules (1%), very fine sand-

sized glauconite grains (1%), and undifferentiated microbioclastic debris. Some spicules 

have been replaced by calcite. Vug porosity observed.  

500 µm 
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1AD – 5801.40’ = Glauconitic wackestone-packstone. Sample is blue epoxy impregnated. 

Porosity (visual estimation): 5.0%. Visual estimation: 5% clays, 80% carbonates, and 15% other 

minerals. Sample contains very fine sand-sized glauconite grains (20%), bone fragments (5%), 

crinoid fragments (3%), and undifferentiated microbioclastic debris. Oil observed throughout 

sample.  

1 mm 

500 µm 
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1AD – 5797.55’ = Silicified packstone. Sample is alizarin red stained. Porosity (NCS): 6.1%. 

Permeability (Klinkenberg): 0.0018 mD. TOC: 0.46%. XRD: 1% clays (1% illite), 69% carbonates 

(53% calcite and 16% dolomite), and 30% other minerals (27% quartz, 1% potassium feldspar, 

2% plagioclase feldspar, and trace amounts of pyrite). Sample is composed of crinoid fragments 

(20%), sponge spicules (20%), brachiopod fragments (10%), and undifferentiated microbioclastic 

debris. Some spicules have been replaced by calcite. Vug and moldic porosity observed.  

1 mm 

500 µm 
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1AD – 5796.35’ = Partially silicified crinoidal wackestone-packstone. Sample is alizarin red 

stained. Porosity (ambient): 1.7%. Permeability (Klinkenberg): Sample was unsuitable for this 

type of measurement. TOC: 0.78%. XRD: 1% clays (1% illite), 36% carbonates (29% calcite and 

7% dolomite), and 63% other minerals (58% quartz, 2% potassium feldspar, 2% plagioclase 

feldspar, and 1% pyrite). Sample contains abundant crinoid fragments (30%), sponge spicules 

(10%), brachiopod fragments (7%), and silt-sized glauconite grains (1%). Some spicules have 

been replaced by calcite. Oil-filled moldic porosity observed.  

1 mm 

500 µm 



255 
 

 

1AD – 5786.50’ = Bioturbated mudstone-wackestone. Sample is alizarin red stained. 

Porosity (NCS): 1.0%. Permeability (Klinkenberg): 0.0002 mD. TOC: 0.20%. XRD: 4% clays 

(3% illite and 1% mixed layer illite/smectite), 53% carbonates (45% calcite and 8% 

dolomite), and 43% other minerals (40% quartz, 1% potassium feldspar, 1% plagioclase 

feldspar, and 1% pyrite). Sample contains silt-sized quartz grains (40%), crinoid 

fragments (15%), and brachiopod fragments (10%). Oil-filled moldic porosity observed.  

 

500 µm 
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1AD – 5775.00’ = Bioturbated mudstone-wackestone. Sample is alizarin red stained. Porosity 

(NCS): 0.4%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.07%. XRD: 1% clays (1% illite), 72% 

carbonates (72% calcite and trace amounts of dolomite), and 27% other minerals (24% quartz, 

1% potassium feldspar, 1% plagioclase feldspar, and 1% pyrite). Sample contains sponge spicules 

(15%) and undifferentiated microbioclastic debris. Burrows concentrate sponge spicules. 

 

1AD – 5770.60’ = Bioturbated wackestone-packstone. Sample is alizarin red stained. Porosity 

(NCS): 0.1%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.08%. XRD: 2% clays (1% illite and 

1% mixed layer illite/smectite), 72% carbonates (71% calcite and 1% dolomite), and 26% other 

minerals (23% quartz, 1% potassium feldspar, 1% plagioclase feldspar,  and 1% pyrite). Sample 

contains sponge spicules (15%) and undifferentiated microbioclastic debris. Burrows 

concentrate sponge spicules. 

1 mm 

500 µm 
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1AD – 5763.15’ = Bioturbated mudstone-wackestone. Sample is alizarin red stained. Porosity (NCS): 

0.7%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.03%. XRD: Trace amounts of clays, 87% 

carbonates (86% calcite and 1% dolomite), and 13% other minerals (9% quartz, 1% potassium 

feldspar, 3% plagioclase feldspar, and trace amounts of pyrite). Sample contains sponge spicules 

(10%) and undifferentiated microbioclastic debris. 

 

1AD – 5760.60’ = Bioturbated mudstone-wackestone. Sample is alizarin red stained. Porosity (NCS): 

0.1%. Permeability (Klinkenberg): 0.0001 mD. TOC: 0.08%. XRD: 2% clays (2% illite), 81% carbonates 

(80% calcite and 1% dolomite), and 17% other minerals (13% quartz, 1% potassium feldspar, 2% 

plagioclase feldspar, and 1% pyrite). Sample contains sponge spicules (5%), crinoid fragments (5%), 

and undifferentiated microbioclastic debris. 

500 µm 

500 µm 
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1AD – 5757.85 = Glauconitic sandstone. Sample is blue epoxy impregnated. Porosity (visual 

estimation): 5.0%. Visual estimation: 10% clays, 20% carbonates, and 70% other minerals. 

Sample contains fine to medium sand-sized glauconite grains (70%), silt-sized quartz grains 

(10%), bone fragments (10%), and brachiopod fragments (5%). Oil-filled vug porosity observed.  

1 mm 

500 µm 
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1AD – 5751.65’ = Bioturbated wackestone-packstone. Sample is alizarin red stained. 

Porosity (NCS): 2.3%. Permeability (Klinkenberg): 0.0001 mD. TOC: 0.13%. XRD: 2% clays 

(1% illite and 1% mixed layer illite/smectite), 73% carbonates (65% calcite and 8% 

dolomite), and 25% other minerals (20% quartz, 1% potassium feldspar, 3% plagioclase 

feldspar, and 1% pyrite). Sample contains silt-sized quartz grains (20%), crinoid grains 

(15%), peloids (10%), and brachiopod fragments (5%). Oil-filled vug and moldic porosity 

observed.  

500 µm 
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1AD – 5750.60’ = Bioturbated wackestone-packstone. Sample is alizarin red stained. 

Porosity (NCS): 2.0%. Permeability (Klinkenberg): 0.040 mD. TOC: 0.50%. XRD: 7% clays 

(2% illite and 5% mixed layer illite/smectite), 50% carbonates (41% calcite and 9% 

dolomite), and 43% other minerals (37% quartz, 1% potassium feldspar, 3% plagioclase 

feldspar, and 2% pyrite). Sample contains silt-sized quartz grains (30%), crinoid 

fragments (15%), peloids (10%), and brachiopod fragments (5%). Oil-filled moldic and 

vug porosity observed.  

500 µm 
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1AD – 5749.00’ = Glauconitic siltstone. Sample is alizarin red stained. Porosity (visual 

estimation): 7.0%. Visual estimation: 10% clays, 5% carbonates, and 85% other minerals. Sample 

contains silt-sized quartz grains (80%), fine-sand sized glauconite grains (10%), and brachiopod 

fragments (3%).  

1 mm 

500 µm 
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1AD – 5744.75’ = Bioturbated mudstone-skeletal packstone. Sample is alizarin red 

stained. Porosity (NCS): 0.8%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.26%. XRD: 

3% clays (2% illite and 1% mixed layer illite/smectite), 64% carbonates (61% calcite and 

3% dolomite), and 33% other minerals (27% quartz, 2% potassium feldspar, 3% 

plagioclase feldspar, and 1% pyrite). Sample contains crinoid fragments (25%), 

brachiopod fragments (5%), and undifferentiated microbioclastic debris. Most spicules 

have been replaced with calcite. 

500 µm 
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1AD – 5737.85’ = Bioturbated wackestone-packstone. Sample is alizarin red stained. Porosity (NCS): 

1.1%. Permeability (Klinkenberg): Sample was unsuitable for this type of measurement. TOC: 0.51%. XRD: 

7% clays (5% illite and 2% mixed layer illite/smectite), 50% carbonates (43% calcite and 7% dolomite), and 

43% other minerals (37% quartz, 1% potassium feldspar, 3% plagioclase feldspar, and 2% pyrite). Sample 

contains crinoid fragments (20%), sponge spicules (10%), and undifferentiated microbioclastic debris.  

 

1AD – 5735.00’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 0.3%. Permeability 

(Klinkenberg): <0.0001 mD. TOC: 0.02%. XRD: 1% clays (1% illite), 87% carbonates (87% calcite and trace 

amounts of dolomite), and 12% other minerals (9% quartz, trace amounts of potassium feldspar, 2% 

plagioclase feldspar, and 1% pyrite). Sample contains crinoid fragments (30%), peloids (15%), and sponge 

spicules (10%).  

500 µm 

500 µm 
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1AD – 5728.80’ = Peloidal-skeletal grainstone. Sample is alizarin red stained and blue epoxy impregnated. 

Porosity (NCS): 6.0%. Permeability (Klinkenberg): 0.014 mD. TOC: 0.48%. XRD: 1% clays (1% illite), 82% 

carbonates (79% calcite and 3% dolomite), and 17% other minerals (12% quartz, 1% potassium feldspar, 

2% plagioclase feldspar, trace amounts of pyrite, 1% apatite, and 1% marcasite). Sample contains crinoid 

fragments (35%), sponge spicules (20%), peloids (20%), silt-sized quartz fragments (10%), and brachiopod 

fragments (5%). Vug porosity observed. 

1 mm 

500 µm 
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1AD – 5727.50’ = Partially silicified skeletal grainstone. Sample is alizarin red stained. 

Porosity (NCS): 0.8%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.03%. XRD: Trace 

amounts of clays, 24% carbonates (23% calcite and 1% dolomite), and 76% other 

minerals (72% quartz, 3% potassium feldspar, 1% plagioclase feldspar, and trace 

amounts of pyrite). Sample contains crinoid fragments (15%), sponge spicules (10%), 

and undifferentiated microbioclastic debris.  

500 µm 
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1AD – 5725.75’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 0.7%. 

Permeability (Klinkenberg): <0.0001 mD. TOC: 0.01%. XRD: Trace amounts of clays, 79% 

carbonates (79% calcite and trace amounts of dolomite), and 21% other minerals (16% quartz, 

2% potassium feldspar, 3% plagioclase feldspar, and trace amounts of pyrite). Sample contains 

crinoid fragments (20%), peloids (20%), sponge spicules (15%), and undifferentiated 

microbioclastic debris.  

1 mm 

500 µm 
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1AD – 5722.00-5722.25’ = Bioturbated wackestone. Sample is alizarin red stained. Porosity (visual 

estimation): 1.0%. TOC: 0.63%. XRD: 7% clays (5% illite and 2% mixed layer illite/smectite), 57% 

carbonates (50% calcite and 7% dolomite), and 36% other minerals (28% quartz, 1% potassium 

feldspar, 4% plagioclase feldspar, 2% pyrite, and 1% apatite). Sample contains crinoid fragments 

(10%), sponge spicules (5%), and undifferentiated microbioclastic debris. Some spicules have been 

replaced by calcite. Minor amounts of vug and moldic porosity observed. 

1 mm 

500 µm 
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1AD – 5718.55’ = Crinoidal wackestone-packstone with silicified skeletal grainstone wisps. Sample 

is alizarin red stained. Porosity (NCS): 1.0%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.10%. 

XRD: Trace amounts of clays, 65% carbonates (63% calcite and 2% dolomite), and 35% other minerals 

(30% quartz, 1% potassium feldspar, 3% plagioclase feldspar, and 1% pyrite). Sample contains crinoid 

fragments (30%), peloids (20%), sponge spicules (7%), and undifferentiated microbioclastic debris. 

Most spicules have been replaced by calcite. Wisps of silicified grainstone (outlined in dashed yellow 

line), possibly representative of burrow fill, are observed.  

1 mm 

500 µm 
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1AD – 5717.50 = Bioturbated packstone. Sample is alizarin red stained. Porosity (NCS): 

0.4%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.12%. XRD: 5% clays (4% illite and 

1% mixed layer illite/smectite), 48% carbonates (45% calcite and 3% dolomite), and 47% 

other minerals (40% quartz, 1% potassium feldspar, 2% plagioclase feldspar, 1% pyrite, 

2% apatite, and 1% marcasite). Sample contains crinoid fragments (15%), sponge 

spicules (10%), brachiopod fragments (5%), and undifferentiated microbioclastic debris. 

Some sponge spicules have been replaced with calcite while other skeletal grains have 

been replaced by quartz.  

500 µm 
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1AD – 5712.55 = Peloidal-skeletal grainstone. Sample is alizarin red stained. Porosity 

(NCS): 0.9%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.01%. XRD: 1% clays (1% 

illite), 84% carbonates (82% calcite and 2% dolomite), and 15% other minerals (12% 

quartz, 1% potassium feldspar, 2% plagioclase feldspar, and trace amounts of pyrite). 

Sample contains crinoid fragments (20%), sponge spicules (15%), brachiopod fragments 

(10%), and peloids (10%). Minor amounts of oil-filled vug porosity observed. 

500 µm 
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1AD – 5709.65 = Silicified grainstone. Sample is alizarin red stained. Porosity (NCS): 

1.4%. Permeability (Klinkenberg): 0.282 mD. TOC: 0.01%. XRD: Trace amounts of clays, 

28% carbonates (21% calcite and 7% dolomite), and 72% other minerals (71% quartz, 1% 

potassium feldspar, and trace amounts of plagioclase feldspar and pyrite). Sample 

contains crinoid fragments and sponge spicules. Vug and moldic porosity observed.  

1 mm 

500 µm 
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1AD – 5707.50 = Silicified grainstone. Sample is alizarin red stained. Porosity (NCS): 

0.4%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.07%. XRD: 1% clays (1% illite), 

41% carbonates (37% calcite and 4% dolomite), and 58% other minerals (56% quartz, 1% 

potassium feldspar, 1% plagioclase feldspar, and trace amounts of pyrite). Sample 

contains crinoid fragments (20%), brachiopod fragments (5%), sponge spicules, and 

undifferentiated microbioclastic debris. Vug porosity observed.  

500 µm 
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1AD – 5705.30’ = Skeletal-peloidal grainstone. Sample is alizarin red stained and blue epoxy 

impregnated. Porosity (NCS): 5.0%. Permeability (Klinkenberg): 0.0031 mD. TOC: 0.12%. XRD: 1% 

clays (1% illite), 82% carbonates (69% calcite and 13% dolomite), and 17% other minerals (16% 

quartz, trace amounts of potassium feldspar, 1% plagioclase feldspar, and trace amounts of 

pyrite). Sample contains crinoid fragments (20%), peloids (15%), sponge spicules (15%), 

brachiopod fragments (5%) and undifferentiated microbioclastic debris. Vug and moldic porosity 

observed. Some dolomite has been replaced by calcite. 

1 mm 

500 µm 
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1AD – 5704.45’ = Skeletal grainstone. Sample is alizarin red stained and blue epoxy 

impregnated. Porosity (NCS): 6.9%. Permeability (Klinkenberg): 0.087 mD. TOC: 0.29%. 

XRD: 1% clays (1% illite), 73% carbonates (68% calcite and 5% dolomite), and 26% other 

minerals (21% quartz, 2% potassium feldspar, 3% plagioclase feldspar, and trace 

amounts of pyrite). Sample contains crinoid fragments (30%), sponge spicules (10%), 

brachiopod fragments (3%), and undifferentiated microbioclastic debris. Abundant 

moldic and vug porosity observed.  

 

1 mm 
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1AD – 5701.65’ = Bioturbated wackestone. Sample is alizarin red stained. Porosity (NCS): 1.4%. 

Permeability (Klinkenberg): 0.075 mD. TOC: 1.06%. XRD: 12% clays (9% illite and 3% mixed layer 

illite/smectite), 30% carbonates (23% calcite and 7% dolomite), and 58% other minerals (45% quartz, 3% 

potassium feldspar, 6% plagioclase feldspar, 3% pyrite, and 1% apatite). Sample contains silt-sized quartz 

grains and undifferentiated microbioclastic debris.  

 

1AD – 5701.30-5701.55’ = Bioturbated wackestone. Sample is alizarin red stained. TOC: 1.21%. XRD: 13% 

clays (9% illite and 4% mixed layer illite/smectite), 24% carbonates (20% calcite and 4% dolomite), and 

63% other minerals (49% quartz, 4% potassium feldspar, 7% plagioclase feldspar, 3% pyrite, and trace 

amounts of apatite). Sample contains silt-sized quartz grains and undifferentiated microbioclastic debris. 

500 µm 

500 µm 
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1AD – 5697.50’ = Bioturbated wackestone. Sample is alizarin red stained. Porosity (NCS): 0.3%. 

Permeability (Klinkenberg): <0.0001 mD. TOC: 0.06%. XRD: 5% clays (4% illite and 1% mixed layer 

illite/smectite), 57% carbonates (51% calcite and 6% dolomite), and 38% other minerals (34% quartz, 1% 

potassium feldspar, 2% plagioclase feldspar, and 1% pyrite). Sample contains silt-sized quartz grains 

(30%), crinoid fragments (15%), peloids (5%), and undifferentiated microbioclastic debris.  

 

1AD – 5691.10’ = Silicified skeletal packstone-grainstone. Sample is alizarin red stained. Porosity (NCS): 

1.3%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.10%. XRD: 3% clays (2% illite and 1% mixed layer 

illite/smectite), 32% carbonates (26% calcite and 6% dolomite), and 65% other minerals (56% quartz, 3% 

potassium feldspar, 4% plagioclase feldspar, 1% pyrite, trace amounts of apatite, and 1% marcasite). 

Sample contains silt-sized quartz grains (15%), crinoid fragments (10%), sponge spicules (10%), and 

undifferentiated microbioclastic debris. 

500 µm 

500 µm 
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1AD – 5688.85’ = Crinoidal packstone. Sample is alizarin red stained. Porosity (NCS): 

2.8%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.14%. XRD: 5% clays (4% illite and 

1% mixed layer illite/smectite), 47% carbonates (34% calcite and 13% dolomite), and 

48% other minerals (38% quartz, 1% potassium feldspar, 6% plagioclase feldspar, 2% 

pyrite, and 1% apatite). Sample consists of silt-sized quartz grains (30%), crinoid 

fragments (15%), sponge spicules (7%), and undifferentiated microbioclastic debris. Oil-

filled moldic and vug porosity observed.  

 

500 µm 
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1AD – 5687.50’ = Peloidal-skeletal packstone. Sample is alizarin red stained. Porosity 

(NCS): 0.3%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.06%. XRD: Trace amounts 

of clays, 75% carbonates (73% calcite and 2% dolomite), and 25% other minerals (22% 

quartz, 1% potassium feldspar, 2% plagioclase feldspar, and trace amounts of pyrite). 

Sample contains crinoidal debris (20%), sponge spicules (10%), peloids (10%), and silt-

sized quartz grains (15%).  

  

500 µm 
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1AD – 5683.40’ = Crinoidal-peloidal packstone-grainstone. Sample is alizarin red 

stained. Porosity (NCS): 1.0%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.03%. XRD: 

2% clays (1% illite and 1% mixed layer illite/smectite), 54% carbonates (51% calcite and 

3% dolomite), and 44% other minerals (39% quartz, 1% potassium feldspar, 3% 

plagioclase feldspar, and 1% pyrite). Sample contains peloids (20%), crinoid fragments 

(10%), and sponge spicules (10%).  

500 µm 
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1AD – 5678.35’ = Bioturbated skeletal packstone. Sample is alizarin red stained. 

Porosity (NCS): 0.6%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.01%. XRD: Trace 

amounts of clays, 69% carbonates (67% calcite and 2% dolomite), and 31% other 

minerals (27% quartz, 1% potassium feldspar, 2% plagioclase feldspar, 1% pyrite, and 

trace amounts of apatite). Sample contains crinoidal debris (20%), peloids (20%), sponge 

spicules (10%), and undifferentiated microbioclastic debris.  

500 µm 
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1AD – 5676.70’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 0.2%. 

Permeability (Klinkenberg): <0.0001 mD. TOC: 0.01%. XRD: 1% clays (1% illite), 79% carbonates (77% 

calcite and 2% dolomite), and 20% other minerals (17% quartz, trace amounts of potassium feldspar, 

3% plagioclase feldspar, and trace amounts of pyrite). Sample contains crinoidal debris (40%), peloids 

(20%), and sponge spicules (7%). Large fracture is calcite cemented and shows multiple cementation 

events. Micro-fractures are cememted with blocky calcite cement. 

1 mm 

500 µm 
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1AD – 5673.25’ = Bioturbated wackestone-skeletal packstone. Sample is alizarin red stained. Porosity 

(NCS): 1.3%. Permeability (Klinkenberg): 0.178 mD. TOC: 0.05%. XRD: 5% clays (3% illite and 2% mixed 

layer illite/smectite), 33% carbonates (30% calcite and 3% dolomite), and 62% other minerals (51% quartz, 

3% potassium feldspar, 6% plagioclase feldspar, 2% pyrite, and trace amounts of apatite). Sample is 

characterized by varying mineralogies and constituents depending on location. Sample contains crinoid 

fragments (10%), sponge spicules (10-35%), silt-sized quartz grains, and undifferentiated microbioclastic 

debris. Ptygmatic fracture in sample is filled with calcite cement and shows some evidence of available 

porosity and permeability. Vug and moldic porosity observed. 

500 µm 

500 µm 
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1AD – 5669.70’ = Bioturbated wackestone-packstone. Sample is alizarin red stained. 

Porosity (NCS): 1.3%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.07%. XRD: 3% 

clays (2% illite and 1% mixed layer illite/smectite), 49% carbonates (44% calcite and 5% 

dolomite), and 48% other minerals (40% quartz, 2% potassium feldspar, 5% plagioclase 

feldspar, 1% pyrite, and trace amounts of apatite). Sample contains silt-sized quartz 

grains and undifferentiated microbioclastic debris composed mostly of crinoidal debris. 

500 µm 
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1AD – 5666.70’ = Bioturbated wackestone-skeletal packstone. Sample is alizarin red 

stained. Porosity (NCS): 0.3%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.03%. XRD: 

1% clays (1% illite), 75% carbonates (73% calcite and 2% dolomite), and 24% other 

minerals (21% quartz, 1% potassium feldspar, 2% plagioclase feldspar, and trace 

amounts of pyrite). Sample contains crinoid fragments (20%), silt-sized quartz grains 

(20%), peloids (15%), sponge spicules (10%), and undifferentiated microbioclastic debris. 

Some spicules are partially replaced by calcite. 

500 µm 
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1AD – 5666.20’ = Skeletal packstone-grainstone. Sample is alizarin red stained. Porosity 

(NCS): 0.5%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.03%. XRD: Trace amounts 

of clays, 51% carbonates (49% calcite and 2% dolomite), and 49% other minerals (45% 

quartz, 2% potassium feldspar, 2% plagioclase feldspar, and trace amounts of pyrite). 

Sample contains crinoid fragments (15%), peloids (10%), sponge spicules (10%), 

brachiopod fragments, and silt-sized quartz grains (40%).  

500 µm 
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1AD – 5663.75’ = Bioturbated packstone-skeletal packstone. Sample is alizarin red stained. 

Porosity (NCS): 2.1%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.08%. XRD: 2% clays (1% 

illite and 1% mixed layer illite/smectite), 53% carbonates (48% calcite and 5% dolomite), and 

45% other minerals (39% quartz, 2% potassium feldspar, 3% plagioclase feldspar, 1% pyrite, and 

trace amounts of apatite). Sample is characterized by varying mineralogies and constituents. 

Sample contains crinoidal debris (10-30%), silt-sized quartz grains (20-10%), sponge spicules (5-

15%), and undifferentiated microbioclastic debris. Moldic and vug porosity observed. 

500 µm 

500 µm 
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1AD – 5657.10’ = Bioturbated wackestone-packstone. Sample is alizarin red stained. Porosity (NCS): 

0.6%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.06%. XRD: 1% clays (1% illite), 39% carbonates (36% 

calcite and 3% dolomite), and 60% other minerals (53% quartz, 2% potassium feldspar, 4% plagioclase 

feldspar, 1% pyrite, and trace amounts of apatite). Sample contains silt-sized quartz grains and 

undifferentiated microbioclastic debris. 

 

1AD – 5654.80’ = Partially silicified, bioturbated peloidal packstone. Sample is alizarin red stained. 

Porosity (NCS): 0.8%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.07%. XRD: 1% clays (1% illite), 42% 

carbonates (39% calcite and 3% dolomite), and 57% other minerals (51% quartz, 2% potassium feldspar, 

3% plagioclase feldspar, and 1% pyrite). Sample contains silt-sized quartz grains (30%), crinoid fragments 

(15%), sponge spicule fragments (10%), and undifferentiated microbioclastic debris.  

500 µm 

500 µm 
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1AD – 5648.65’ = Peloidal packstone to bioturbated wackestone-packstone. Sample is alizarin red 

stained. Porosity (NCS): 0.8%. Permeability (Klinkenberg): 0.0001 mD. TOC: 0.11%. XRD: 2% clays (1% illite 

and 1% mixed layer illite/smectite), 39% carbonates (37% calcite and 2% dolomite), and 59% other 

minerals (53% quartz, 2% potassium feldspar, 3% plagioclase feldspar, and 1% pyrite). Sample is 

characterized by varying mineralogies and constituents depending on location. Sample contains silt-sized 

quartz grains (50%), crinoid fragments (10%), sponge spicules (10%), and undifferentiated microbioclastic 

debris. Some sponge spicules have been replaced with calcite. 

1 mm 

500 µm 
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1AD – 5646.65’ = Skeletal-peloidal packstone-grainstone. Sample is alizarin red stained. 

Porosity (NCS): 1.1%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.03%. XRD: 2% 

clays (1% illite and 1% mixed layer illite/smectite), 56% carbonates (54% calcite and 2% 

dolomite), and 42% other minerals (37% quartz, 1% potassium feldspar, 3% plagioclase 

feldspar, and 1% pyrite). Sample contains silt-sized quartz grains (35%), sponge spicules 

(15%), crinoid fragments (5%), and undifferentiated microbioclastic debris. Some sponge 

spicules are replaced by calcite. Minor amounts of moldic and vug porosity observed. 

500 µm 
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1AD – 5641.80’ = Partially silicified, bioturbated peloidal packstone. Sample is alizarin 

red stained. Porosity (NCS): 1.0%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.05%. 

XRD: 1% clays (1% illite), 50% carbonates (47% calcite and 3% dolomite), and 49% other 

minerals (40% quartz, 3% potassium feldspar, 5% plagioclase feldspar, 1% pyrite, and 

trace amounts of apatite). Sample contains silt-sized quartz grains (35%), sponge spicule 

fragments (15%), crinoid fragments (10%), and undifferentiated microbioclastic debris. 

Oil-filled vug and moldic porosity observed.  

 

500 µm 
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1AD – 5638.50’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 

0.4%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.02%. XRD: 1% clays (1% illite), 

74% carbonates (72% calcite and 2% dolomite), and 25% other minerals (22% quartz, 1% 

potassium feldspar, 2% plagioclase feldspar, and trace amounts of pyrite). Sample 

contains crinoidal debris (30%), peloids (15%), sponge spicules (10%), silt-sized quartz 

grains (10%), and undifferentiated microbioclastic debris.  

500 µm 
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1AD – 5635.90’ = Peloidal packstone-grainstone to bioturbated wackestone. Porosity 

(visual estimation): 1.5%. Visual estimation: 3% clays, 55% carbonates, and 42% other 

minerals. Sample contains silt-sized quartz grains, peloids, sponge spicules, crinoids, and 

undifferentiated microbioclastic debris. Vug and moldic porosity observed.  

500 µm 

500 µm 



293 
 

 

1AD – 5634.65’ = Bioturbated wackestone with grainstone wisps. Sample is alizarin red 

stained. Porosity (NCS): 2.0%. Permeability (Klinkenberg): 0.0001 mD. TOC: 0.19%. XRD: 

3% clays (2% illite and 1% mixed layer illite/smectite), 53% carbonates (49% calcite and 

4% dolomite), and 44% other minerals (41% quartz, 1% potassium feldspar, 2% 

plagioclase feldspar, and trace amounts of pyrite and apatite). Sample is characterized 

by varying mineralogies and constituents depending on location. Sample contains 

crinoidal debris (10-30%), silt-sized quartz grains (20%), and undifferentiated 

microbioclastic debris. Oil-filled vug porosity observed.  

500 µm 
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1AD – 5630.75’ = Bioturbated wackestone. Sample is alizarin red stained. Porosity (ambient): 

2.5%. Permeability (Klinkenberg): Sample was unsuitable for this type of measurement. TOC: 

0.59%. XRD: 10% clays (8% illite and 2% mixed layer illite/smectite), 39% carbonates (33% calcite 

and 6% dolomite), and 51% other minerals (39% quartz, 4% potassium feldspar, 6% plagioclase 

feldspar, 2% pyrite, and trace amounts of apatite). Sample contains silt-sized quartz grains 

(20%), crinoid fragments (15%), brachiopod fragments (10%), sponge spicules (5%), and 

undifferentiated microbioclastic debris. Vug and minor amounts of moldic porosity observed.  

1 mm 

500 µm 
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1AD – 5628.50’ = Silicified skeletal grainstone. Sample is alizarin red stained. Porosity 

(NCS): 2.3%. Permeability (Klinkenberg): 0.110 mD. TOC: 0.02%. XRD: Trace amounts of 

clays, 32% carbonates (31% calcite and 1% dolomite), and 68% other minerals (66% 

quartz, 2% potassium feldspar, and trace amounts of plagioclase feldspar and pyrite). 

Sample contains crinoid fragments (20%), sponge spicules (10%), brachiopod (or 

ostracode?) fragments (5%), and minor amounts of calcite replaced dolomite. Moldic 

porosity observed.  

1 mm 

500 µm 
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1AD – 5624.50’ = Silicified skeletal grainstone. Sample is alizarin red stained. Porosity 

(ambient): 1.1%. Permeability (Klinkenberg): Sample was unsuitable for this type of 

analysis. TOC: 0.11%. XRD: 1% clays (1% illite), 32% carbonates (31% calcite and 1% 

dolomite), and 67% other minerals (64% quartz, 1% potassium feldspar, 2% plagioclase 

feldspar, and trace amounts of pyrite). Sample contains crinoid fragments (25%), sponge 

spicules (15%), and brachiopod fragments (10%). Moldic porosity observed.  

500 µm 
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1AD – 5624.20’ = Partially silicified skeletal-peloidal grainstone. Sample is alizarin red 

stained and blue epoxy impregnated. Porosity (NCS): 4.8%. Permeability (Klinkenberg): 

0.0005 mD. TOC: 0.08%. XRD: 1% clays (1% illite), 60% carbonates (59% calcite and 1% 

dolomite), and 39% other minerals (36% quartz, 1% potassium feldspar, 2% plagioclase 

feldspar, and trace amounts of pyrite and apatite). Sample contains crinoid fragments 

(20%), sponge spicules (15%), peloids (10%), and brachiopod fragments (5%). Moldic 

and vug porosity observed.  

500 µm 
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1AD – 5616.95’ = Skeletal packstone-grainstone. Sample is alizarin red stained. Porosity 

(ambient): 7.7%. Permeability (Klinkenberg): Sample was unsuitable for this type of analysis. 

TOC: 0.19%. XRD: 5% clays (3% illite and 2% mixed layer illite/smectite), 37% carbonates (33% 

calcite and 4% dolomite), and 58% other minerals (52% quartz, 2% potassium feldspar, 3% 

plagioclase feldspar, 1% pyrite, and trace amounts of apatite). Sample contains silt-sized quartz 

grains (30%), crinoid fragments (20%), sponge spicules (5%), and undifferentiated 

microbioclastic debris. Oil-filled moldic and vug porosity observed. 

1 mm 

500 µm 
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1AD – 5614.50’ = Silicified skeletal grainstone. Sample is alizarin red stained. Porosity 

(NCS): 1.8%. Permeability (Klinkenberg): 0.0040 mD. TOC: 0.14%. XRD: Trace amounts of 

clays, 17% carbonates (16% calcite and 1% dolomite), and 83% other minerals (80% 

quartz, 2% potassium feldspar, 1% plagioclase feldspar, and trace amounts of pyrite). 

Sample contains sponge spicules (25%), crinoid fragments (10%), and undifferentiated 

microbioclastic debris. Oil-filled moldic and vug porosity observed. 

500 µm 
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1AD – 5610.75’ = Silicified skeletal grainstone. Sample is alizarin red stained and blue 

epoxy impregnated. Porosity (NCS): 0.8%. Permeability (Klinkenberg): <0.0001 mD. TOC: 

0.09%. XRD: 1% clays (1% illite), 32% carbonates (31% calcite and 1% dolomite), and 

67% other minerals (63% quartz, 2% potassium feldspar, 2% plagioclase feldspar, and 

trace amounts of pyrite and apatite). Sample contains sponge spicules (35%), crinoid 

fragments (5%), brachiopod fragments (5%), and undifferentiated microbioclastic 

debris. Moldic and vug porosity observed. 

 

500 µm 
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1AD – 5606.40’ = Silicified skeletal grainstone. Sample is alizarin red stained. Porosity 

(NCS): 0.1%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.10%. XRD: 1% clays (1% 

illite), 18% carbonates (17% calcite and 1% dolomite), and 81% other minerals (73% 

quartz, 4% potassium feldspar, 2% plagioclase feldspar, and 2% pyrite). Sample contains 

sponge spicules (35%), crinoid fragments (10%), and undifferentiated microbioclastic 

debris. Moldic, vug, and intraparticle porosity observed. 

500 µm 
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1AD – 5605.50’ =Bioturbated wackestone. Sample is alizarin red stained. Porosity (NCS): 1.2%. 

Permeability (Klinkenberg): 0.0002 mD. TOC: 0.11%. XRD: 3% clays (2% illite and 1% mixed layer 

illite/smectite), 49% carbonates (45% calcite and 4% dolomite), and 48% other minerals (41% 

quartz, 2% potassium feldspar, 4% plagioclase feldspar, 1% pyrite, and trace amounts of 

apatite). Sample is composed of silt-sized quartz grains and undifferentiated microbioclastic 

debris. Ptygmatic fracture in sample is filled with blocky calcite cement.  

1 mm 

500 µm 
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1AD – 5599.40’ = Partially silicified skeletal grainstone. Sample is alizarin red stained 

and blue epoxy impregnated. Porosity (NCS): 10.6%. Permeability (Klinkenberg): 0.553 

mD. TOC: 0.44%. Trace amounts of clays, 59% carbonates (50% calcite and 9% 

dolomite), and 41% other minerals (38% quartz, 1% potassium feldspar, 1% plagioclase 

feldspar, 1% pyrite, and trace amounts of apatite). Sample contains crinoid fragments 

(35%), sponge spicules (10%), and undifferentiated microbioclastic debris. Fracture in 

sample is filled with quartz cement. Abundant moldic and vug porosity observed. 

Silicified 1 mm 

500 µm 
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1AD – 5596.80’ = Bioturbated mudstone-wackestone. Sample is alizarin red stained. 

Porosity (NCS): 1.8%. Permeability (Klinkenberg): 0.322 mD. TOC: 0.55%. XRD: 15% clays 

(1% chlorite, 9% illite, and 5% mixed layer illite/smectite), 36% carbonates (32% calcite 

and 4% dolomite), and 49% other minerals (41% quartz, 1% potassium feldspar, 3% 

plagioclase feldspar, 2% pyrite, 1% apatite, and 1% marcasite). Sample contains crinoid 

fragments (20%), sponge spicules (10%), brachiopod fragments (5%), and 

undifferentiated microbioclastic debris. Moldic and vug porosity observed. 

1 mm 

500 µm 
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1AD – 5592.70’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 

1.2%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.01%. XRD: 1% clays (1% illite), 

78% carbonates (77% calcite and 1% dolomite), and 21% other minerals (15% quartz, 

trace amounts of potassium feldspar, 5% plagioclase feldspar, trace amounts of pyrite, 

and 1% apatite). Sample contains crinoid fragments (15%), peloids (15%), sponge 

spicules (10%), ostracodes (2%), phosphatic grains (2%) and undifferentiated 

microbioclastic debris. Moldic and vug porosity observed. 

500 µm 
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1AD – 5584.80’ = Bioturbated wackestone-packstone. Sample is alizarin red stained. Porosity 

(NCS): 1.3%. Permeability (Klinkenberg): 0.203 mD. TOC: 0.82%. XRD: 9% clays (1% chlorite, 5% 

illite, and 3% mixed layer illite/smectite), 39% carbonates (34% calcite and 4% dolomite), and 

52% other minerals (41% quartz, 1% potassium feldspar, 3% plagioclase feldspar, 3% pyrite, 3% 

apatite, and 1% marcasite). Sample contains crinoid fragments (10%), peloids (10%), and 

undifferentiated microbioclastic debris. Vug porosity observed. 

1 mm 

500 µm 
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1AD – 5581.70’ = Partially silicified, bioturbated wackestone to skeletal packstone. Sample is 

alizarin red stained. Porosity (NCS): 2.6%. Permeability (Klinkenberg): 0.0018 mD. TOC: 2.48%. 

XRD: 11% clays (8% illite and 3% mixed layer illite/smectite), 20% carbonates (19% calcite and 

1% dolomite), and 69% other minerals (54% quartz, 3% potassium feldspar, 6% plagioclase 

feldspar, 3% pyrite, and 3% apatite). Sample contains crinoid grains (10%), sponge spicules 

(20%), minor amounts of very fine sand-size glauconite grains (3%) and brachiopod fragments 

(1%), and undifferentiated calcareous and silicified microbioclastic debris. Oil-filled vug porosity 

observed.  

1 mm 

500 µm 
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1AD – 5581.55-5581.80’ = Bioturbated wackestone-packstone. Sample is alizarin red 

stained. TOC: 0.94%. XRD: 22% clays (1% chlorite, 15% illite, and 1% mixed layer 

illite/smectite), 12% carbonates (11% calcite and 1% dolomite), and 66% other minerals 

(49% quartz, 4% potassium feldspar, 9% plagioclase feldspar, 3% pyrite, and 1% apatite). 

Sample contains slit-sized quartz grains (30%), sponge spicules (10%), minor amounts of 

very fine sand-size glauconite grains (3%), and undifferentiated calcareous and silicified 

microbioclastic debris. Oil observed throughout sample. 

500 µm 
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1AD – 5574.35’ = Bioturbated wackestone-packstone. Sample is alizarin red stained. Porosity (ambient): 2.2%. 

Permeability (Klinkenberg): Sample was unsuitable for this type of measurement. TOC: 1.51%. XRD: 16% clays (1% 

chlorite, 8% illite, and 7% mixed layer illite/smectite), 34% carbonates (33% calcite and 1% dolomite), and 50% other 

minerals (37% quartz, 1% potassium feldspar, 5% plagioclase feldspar, 3% pyrite, 2% apatite, and 1% marcasite). 

Sample contains crinoid grains (15%), sponge spicules (10%), and undifferentiated calcareous and silicified 

microbioclastic debris. Oil-filled vug and moldic porosity. 

 

1AD – 5569.65-5569.95’ = Bioturbated mudstone-wackestone. Sample is alizarin red stained. Porosity (visual 

estimation): 1.2%. TOC: 1.47%. XRD: 10% clays (1% chlorite, 8% illite, and 1% mixed layer illite/smectite), 43% 

carbonates (42% calcite and 1% dolomite), and 47% other minerals (36% quartz, 3% potassium feldspar, 5% 

500 µm 

500 µm 
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plagioclase feldspar, 2% pyrite, and 1% apatite). Sample contains crinoid grains (15%), sponge spicules (5%), and 

undifferentiated calcareous and silicified microbioclastic debris. 

 

1AD – 5559.50’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 1.7%. 

Permeability (Klinkenberg): <0.0001 mD. TOC: 0.14%. XRD: 2% clays (1% illite and 1% mixed 

layer illite/smectite), 46% carbonates (43% calcite and 3% dolomite), and 52% other minerals 

(46% quartz, 2% potassium feldspar, 3% plagioclase feldspar, 1% pyrite, and trace amounts of 

apatite). Sample contains crinoid grains (25%), silt-sized quartz grains (15%), sponge spicules 

(10%), and undifferentiated microbioclastic debris. Oil-filled moldic and vug porosity observed.  

500 µm 
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1AD – 5556.05’ = Crinoidal grainstone. Sample is alizarin red stained. Porosity (NCS): 1.3%. Permeability 

(Klinkenberg): 0.0001 mD. TOC: 0.07%. XRD: 4% clays (2% illite and 2% mixed layer illite/smectite), 44% 

carbonates (41% calcite and 3% dolomite), and 52% other minerals (44% quartz, 2% potassium feldspar, 5% 

plagioclase feldspar, and 1% pyrite). Sample contains crinoid grains (20%), silt-sized quartz grains (10%), sponge 

spicules (5%), and undifferentiated microbioclastic debris. Oil-filled moldic and vug porosity observed. 

 

1AD – 5550.80’ = Crinoidal grainstone. Sample is alizarin red stained. Porosity (NCS): 2.3%. Permeability 

(Klinkenberg): <0.0001 mD. TOC: 0.12%. XRD: 5% clays (4% illite and 1% mixed layer illite/smectite), 31% 

carbonates (28% calcite and 3% dolomite), and 64% other minerals (51% quartz, 3% potassium feldspar, 8% 

plagioclase feldspar, 1% pyrite, and 1% apatite). Sample contains crinoid grains (20%), silt-sized quartz grains 

(20%), sponge spicules (7%), and undifferentiated microbioclastic debris. Oil-filled moldic and vug porosity 

observed. 

500 µm 

500 µm 
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1AD – 5546.55’ = Silicified skeletal grainstone. Sample is alizarin red stained. Porosity (NCS): 

1.5%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.03%. XRD: 1% clays (1% illite), 35% 

carbonates (34% calcite and 1% dolomite), and 64% other minerals (58% quartz, 2% potassium 

feldspar, 4% plagioclase feldspar, and trace amounts of pyrite and apatite). Sample contains silt- 

sponge spicules (40%), crinoid grains (10%), and undifferentiated microbioclastic debris. 

Fracture is filled with calcite cement. Oil-filled moldic and vug porosity observed. 

1 mm 

500 µm 
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1AD – 5546.10’ = Skeletal-peloidal packstone. Sample is alizarin red stained. Porosity 

(NCS): 1.8%. Permeability (Klinkenberg): 0.0001 mD. TOC: 0.07%. XRD: 4% clays (3% illite 

and 1% mixed layer illite/smectite), 36% carbonates (33% calcite and 3% dolomite), and 

60% other minerals (53% quartz, 1% potassium feldspar, 5% plagioclase feldspar, and 

1% pyrite). Sample contains crinoid grains (15%), silt-sized quartz grains (15%), sponge 

spicules (10%), and undifferentiated microbioclastic debris. Oil-filled moldic and vug 

porosity observed. 

500 µm 
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1AD – 5544.65’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 

0.8%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.01%. XRD: 1% clays (1% illite), 

79% carbonates (78% calcite and 1% dolomite), and 20% other minerals (16% quartz, 1% 

potassium feldspar, 3% plagioclase feldspar, and trace amounts of pyrite and apatite). 

Sample contains crinoid grains (30%), sponge spicules (15%), peloids (15%), silt-sized 

quartz grains (10%), and phosphatic grains (3%). Oil-filled moldic and vug porosity 

observed. 

500 µm 
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1AD – 5536.60’ = Bioturbated wackestone to silicified skeletal packstone-grainstone. Sample is alizarin 

red stained. Porosity (NCS): 2.9%. Permeability (Klinkenberg): 0.0001 mD. TOC: 0.16%. XRD: 1% clays (1% 

illite), 31% carbonates (29% calcite and 2% dolomite), and 68% other minerals (62% quartz, 2% potassium 

feldspar, 3% plagioclase feldspar, 1% pyrite, and trace amounts of apatite). Sample contains crinoid grains 

(15%), sponge spicules (25%), peloids (15%), phosphatic grains (2%), and undifferentiated microbioclastic 

debris. Ptygmatic fracture in sample is filled with blocky calcite cement. Oil-filled moldic and vug porosity 

observed. 

1 mm 

500 µm 
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1AD – 5536.00’ = Silicified skeletal packstone. Sample is alizarin red stained. Porosity (NCS): 

2.4%. Permeability (Klinkenberg): 0.0006 mD. TOC: 0.15%. XRD: 4% clays (3% illite and 1% mixed 

layer illite/smectite), 29% carbonates (27% calcite and 2% dolomite), and 67% other minerals 

(63% quartz, 1% potassium feldspar, 2% plagioclase feldspar, and 1% pyrite). Sample contains 

crinoid grains (15%), sponge spicules (30%), and undifferentiated microbioclastic debris. Oil-

filled moldic and vug porosity observed. 

1 mm 

500 µm 
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1AD – 5532.10’ = Bioturbated packstone. Sample is alizarin red stained. Porosity (NCS): 

2.0%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.15%. XRD: 3% clays (2% illite and 

1% mixed layer illite/smectite), 38% carbonates (35% calcite and 3% dolomite), and 59% 

other minerals (50% quartz, 2% potassium feldspar, 4% plagioclase feldspar, 2% pyrite, 

and 1% apatite). Sample contains silt-sized quartz grains and undifferentiated 

microbioclastic debris. Oil-filled moldic and vug porosity observed. 

 

500 µm 
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1AD – 5527.80’ = Bioturbated wackestone to silicified skeletal grainstone. Sample is alizarin 

red stained and blue epoxy impregnated. Porosity (ambient): 2.8%. Permeability (Klinkenberg): 

Sample was unsuitable for this type of measurement. TOC: 0.09%. XRD: 2% clays (1% illite and 

1% mixed layer illite/smectite), 34% carbonates (32% calcite and 2% dolomite), and 64% other 

minerals (59% quartz, 2% potassium feldspar, 3% plagioclase feldspar, and trace amounts of 

pyrite and apatite). Sample contains crinoid grains (10%), sponge spicules (20%), and 

undifferentiated microbioclastic debris. Grainy sediments concentrated in burrows. Oil-filled 

moldic and vug porosity observed. 

Spiculitic 1 mm 

500 µm 
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1AD – 5526.05’ = Bioturbated wackestone-packstone. Sample is alizarin red stained. 

Porosity (NCS): 0.7%. Permeability (Klinkenberg): 0.0041 mD. TOC: 0.14%. XRD: 4% clays 

(3% illite and 1% mixed layer illite/smectite), 49% carbonates (45% calcite and 4% 

dolomite), and 47% other minerals (42% quartz, 1% potassium feldspar, 3% plagioclase 

feldspar, 1% pyrite, and trace amounts of apatite). Sample contains crinoid grains (20%), 

silt-sized quartz grains (50%), and undifferentiated microbioclastic debris.  

 

1 mm 

5 mm 
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1AD – 5524.65-5524.90’ = Bioturbated skeletal packstone. Sample is alizarin red stained. TOC: 

0.71%. XRD: 13% clays (1% chlorite, 8% illite, and 4% mixed layer illite/smectite), 32% 

carbonates (30% calcite and 2% dolomite), and 55% other minerals (43% quartz, 2% potassium 

feldspar, 6% plagioclase feldspar, 3% pyrite, and 1% apatite). Sample contains crinoid grains 

(15%), sponge spicules (15%), brachiopod fragments (3%), and phosphatic grains (3%). Oil-filled 

moldic and vug porosity observed. 

2 mm 

500 µm 
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1AD – 5520.10’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 

1.9%. Permeability (Klinkenberg): 0.0001 mD. TOC: 0.01%. XRD: 1% clays (1% illite), 72% 

carbonates (71% calcite and 1% dolomite), and 27% other minerals (22% quartz, 1% 

potassium feldspar, 4% plagioclase feldspar, and trace amounts of pyrite and apatite). 

Sample contains crinoid grains (30%), peloids (20%), silt-sized quartz grains (20%), and 

sponge spicules (15%). Quartz-rich wisps (outlined in dashed yellow line) observed 

throughout sample. Oil-filled moldic and vug porosity observed. 

1 mm 

500 µm 
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1AD – 5517.75’ = Bioturbated wackestone-packstone. Sample is blue epoxy 

impregnated. Porosity (visual estimation): 1.0%. Visual estimation: 12% clays, 35 % 

carbonates, 53% other minerals. Sample contains crinoid grains (25%), silt-sized quartz 

grains (15%), phosphatic or glauconitic grains (5%), and undifferentiated microbioclastic 

debris.  

1 mm 

500 µm 
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1AD – 5516.10’ = Crinoidal wackestone-packstone. Sample is alizarin red stained. 

Porosity (NCS): 0.8%. Permeability (Klinkenberg): 0.0001-3 mD. TOC: 0.54%. XRD: 5% 

clays (3% illite and 2% mixed layer illite/smectite), 57% carbonates (56% calcite and 1% 

dolomite), and 38% other minerals (33% quartz, 1% potassium feldspar, 2% plagioclase 

feldspar, 2% pyrite, and trace amounts of apatite). Sample contains crinoid grains (25%), 

sponge spicules (10%), and silt-sized quartz grains (10%). Oil-filled moldic and vug 

porosity observed. 

1 mm 

500 µm 
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1AD – 5512.0-5512.25’ = Laminated mudstone-wackestone. Sample is alizarin red stained. TOC: 

1.41%. XRD: 10% clays (8% illite and 2% mixed layer illite/smectite), 58% carbonates (55% calcite 

and 3% dolomite), and 32% other minerals (26% quartz, 1% potassium feldspar, 1% plagioclase 

feldspar, 1% pyrite, 2% apatite, and 1% marcasite). Sample contains silt-sized quartz grains 

(10%), sponge spicules (10%), and undifferentiated microbioclastic debris.  

2 mm 

500 µm 
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1AD – 5509.10’ = Partially silicified skeletal grainstone. Sample is alizarin red stained. 

Porosity (NCS): 1.2%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.01%. XRD: 1% 

clays (8% illite and 2% mixed layer illite/smectite), 65% carbonates (60% calcite and 5% 

dolomite), and 34% other minerals (28% quartz, 1% potassium feldspar, 4% plagioclase 

feldspar, trace amounts of pyrite, and 1% apatite). Sample contains crinoid grains (25%), 

sponge spicules (20%), peloids (10%), and silt-sized quartz grains (10%). Increased 

abundance of sponge spicules in silicified portion. Oil-filled vug porosity observed. 

1 mm 

500 µm 
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1AD – 5507.90’ = Skeletal grainstone. Sample is alizarin red stained. Porosity (NCS): 

4.2%. Permeability (Klinkenberg): 0.0001 mD. TOC: 0.23%. XRD: 1% clays (1% illite), 54% 

carbonates (47% calcite and 7% dolomite), and 45% other minerals (42% quartz, 1% 

potassium feldspar, 2% plagioclase feldspar, and trace amounts of pyrite and apatite). 

Sample contains crinoid grains (25%), sponge spicules (20%), peloids (15%), brachiopod 

fragments (10%), and undifferentiated microbioclastic debris. A bryozoan fragment or a 

transverse section of an echinoid spine is shown in the upper photomicrograph. Oil-

filled and open fracture, moldic, and vug porosity observed. 

500 µm 

500 µm 
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1AD – 5506.10’ = Skeletal-peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 2.2%. 

Permeability (Klinkenberg): 0.0001 mD. TOC: 0.07%. XRD: 2% clays (1% illite and 1% mixed layer 

illite/smectite), 69% carbonates (64% calcite and 5% dolomite), and 29% other minerals (25% quartz, 1% 

potassium feldspar, 2% plagioclase feldspar, 1% pyrite, and trace amounts of apatite). Sample contains 

crinoid grains (25%), peloids (20%), brachiopod or ostracode fragments (10%), silt-sized quartz grains 

(10%), sponge spicules (5%), and undifferentiated microbioclastic debris. Oil-filled moldic porosity 

observed. 

1 mm 

500 µm 
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1AD – 5504.25’ = Silicified skeletal grainstone. Sample is alizarin red stained. Porosity (NCS): 

2.4%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.01%. XRD: 1% clays (1% illite), 67% 

carbonates (64% calcite and 3% dolomite), and 32% other minerals (29% quartz, 1% potassium 

feldspar, 2% plagioclase feldspar, and trace amounts of pyrite and apatite). Sample contains 

crinoid grains (20%), sponge spicules (30%), peloids (15%), and undifferentiated microbioclastic 

debris. Oil-filled moldic and vug porosity observed. 

1 mm 

500 µm 
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1AD – 5501.65’ = Silica-rich skeletal-peloidal packstone-grainstone. Sample is alizarin 

red stained. Porosity (NCS): 2.9%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.01%. 

XRD: 4% clays (4% illite), 50% carbonates (28% calcite and 22% dolomite), and 46% 

other minerals (36% quartz, 2% potassium feldspar, 6% plagioclase feldspar, trace 

amounts of pyrite, 1% apatite, and 1% marcasite). Sample contains crinoidal debris 

(20%), sponge spicules (15%), and undifferentiated microbioclastic debris. Oil-filled 

moldic and vug porosity observed. 

500 µm 
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1AD – 5498.45’ = Peloidal-skeletal grainstone. Sample is alizarin red stained. Porosity (NCS): 

0.6%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.01%. XRD: 1% clays (1% illite), 71% 

carbonates (71% calcite), and 28% other minerals (22% quartz, 1% potassium feldspar, 4% 

plagioclase feldspar, trace amounts of pyrite, and 1% apatite). Sample contains crinoid grains 

(15%), sponge spicules (10%), peloids (20%), silt-sized quartz grains (20%), and brachiopod 

fragments (3%). Oil-filled moldic and vug porosity observed. 

1 mm 

500 µm 



331 
 

 

1AD – 5496.70’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 

1.0%. Permeability (Klinkenberg): 0.023 mD. TOC: 0.03%. XRD: 1% clays (1% illite), 84% 

carbonates (84% calcite), and 15% other minerals (10% quartz, 1% potassium feldspar, 

3% plagioclase feldspar, 1% pyrite, and trace amounts of apatite). Sample contains 

crinoid fragments (30%), sponge spicules (15%), peloids (10%), silt-sized quartz grains 

(10%), and undifferentiated microbioclastic debris. Minor amounts of oil-filled moldic 

and vug porosity observed. 

500 µm 
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1AD – 5496.10’ = Chert/silicified grainstone. Sample is alizarin red stained and blue 

epoxy impregnated. Sample has been completely silicified. Original skeletal components 

were composed of crinoid fragments, sponge spicules, and other undifferentiated 

microbioclastic debris.  

1 mm 

1 mm 
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1AD – 5495.2’ = Pennsylvanian wackestone-floatstone. Sample is alizarin red stained 

and blue epoxy impregnated. Sample contains silt-sized quartz grains (25%), crinoid 

fragments (20%), brachiopod fragments (15%), and bryozoans (10%).  

2 mm 

2 mm 
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1AD – 5491.4’ = Pennsylvanian wackestone-packstone. Sample is blue epoxy 

impregnated. Sample contains silt-sized quartz fragments and undifferentiated skeletal 

material likely composed of crinoid and sponge spicule fragments.  

 

1 mm 

500 µm 
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Core #2 

Winney #1-8 SWD 
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2WN – 5312.75’ = Glauconitic sandstone. Sample is blue epoxy impregnated. Porosity (visual estimation): 

5.0%. Visual estimation: 10% clays, 35% carbonates, and 55% other minerals. Sample contains slit-sized 

quartz grains (50%), fine sand-sized glauconite grains (40%), brachiopod fragments (3%), bone fragments 

(5%), and some phosphate, sponge spicule, and conodont fragments. Moldic porosity from dissolution 

skeletal grains. Oil present throughout sample. 
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2WN – 5309.60’ = Bioturbated wackestone-packstone. Sample is alizarin red stained. 

Porosity (NCS): 3.1%. Permeability (Klinkenberg): 0.0009 mD. TOC: 0.43%. XRD: 2% clays 

(1% illite and 1% mixed layer illite/smectite), 70% carbonates (55% calcite and 15% 

dolomite), and 28% other minerals (23% quartz, 1% potassium feldspar, 2% plagioclase 

feldspar, 1% pyrite, and 1% apatite). Sample contains silt-sized quartz grains (23%), 

crinoid fragments (15%), brachiopod fragments (5%), and sponge spicules (10%). 

Dominantly oil-filled vug porosity. 



338 
 

 

2WN – 5305.35’ = Bioturbated crinoidal wackestone-packstone. Sample is alizarin red stained. Porosity 

(NCS): 0.4%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.08%. XRD: 1% clays (5% illite), 84% 

carbonates (83% calcite and 1% dolomite), and 15% other minerals (12% quartz, 1% potassium feldspar, 

2% plagioclase feldspar, and trace amounts of pyrite and apatite). Sample contains abundant crinoid 

grains (40%), peloids (10%), and sponge spicules (15%). Oil-filled vug porosity observed.  

Peloidal 

Wackestone 
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2WN – 5298.45’ = Bioturbated mudstone-wackestone. Sample is alizarin red stained. 

Porosity (NCS): 0.7%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.18%. XRD: 4% 

clays (2% illite and 2% mixed layer illite/smectite), 68% carbonates (65% calcite and 3% 

dolomite), and 28% other minerals (25% quartz, 1% potassium feldspar, 2% plagioclase 

feldspar, and trace amounts of pyrite). Sample contains silt-sized quartz grains (25%) 

and crinoid (15%) and brachiopod (5%) fragments. 
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2WN – 5292.60’ = Glauconitic sandstone. Sample is alizarin red stained. Porosity (NCS): 9.6%. 

Permeability (Klinkenberg): 0.710 mD. TOC: 1.30%. XRD: 26% clays (21% illite and 5% mixed layer 

illite/smectite), 13% carbonates (11% calcite and 2% dolomite), and 61% other minerals (47% quartz, 2% 

potassium feldspar, 5% plagioclase feldspar, 5% pyrite, and 2% apatite). Sample contains silt-sized quartz 

grains (47%), fine to medium sand-sized glauconite grains (35%), bone fragments (3%), brachiopod 

fragments (3%), and conodonts (1%). Significant amounts of oil observed throughout sample.  
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2WN – 5289.55’ = Bioturbated wackestone-packstone. Sample is alizarin red stained. 

Porosity (NCS): 3.7%. Permeability (Klinkenberg): 0.369 mD. TOC: 0.64%. XRD: 14% clays 

(1% chlorite, 9% illite, and 4% mixed layer illite/smectite), 34% carbonates (25% calcite 

and 9% dolomite), and 52% other minerals (41% quartz, 3% potassium feldspar, 5% 

plagioclase feldspar, 3% pyrite and trace amounts of apatite). Sample contains silt-sized 

quartz grains (40%) and crinoid fragments (30%). Oil-filled moldic and vug porosity 

observed.  
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2WN – 5285.55’ = Bioturbated wackestone. Sample is alizarin red stained and blue 

epoxy impregnated. Porosity (ambient): 3.5%. Permeability (Klinkenberg): Sample was 

unsuitable for this type of measurement. TOC: 0.75%. XRD: 15% clays (10% illite and 5% 

mixed layer illite/smectite), 38% carbonates (28% calcite and 10% dolomite), and 47% 

other minerals (37% quartz, 1% potassium feldspar, 5% plagioclase feldspar, 3% pyrite, 

and 1% apatite). Sample contains silt-sized quartz grains (37%), crinoid fragments (10%), 

scattered sponge spicules, and undifferentiated microbioclastic debris. Oil-filled moldic 

porosity from the dissolution of crinoid grains observed. 
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2WN – 5282.80’ = Bioturbated wackestone. Porosity (visual estimation): 2.5%. Visual 

estimation: 15% clays, 35% carbonates, and 50% other minerals. Sample contains silt-

sized quartz grains, ostracodes (3%), brachiopod fragments (5%), and undifferentiated 

microbioclastic debris. Moldic, vug, and intracrystalline porosity observed.  

500 µm 
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2WN – 5279.85’ = Bioturbated wackestone. Sample is alizarin red stained. Porosity 

(NCS): 2.4%. Permeability (Klinkenberg): 0.039 mD. TOC: 0.85%. XRD: 12% clays (8% illite 

and 4% mixed layer illite/smectite), 36% carbonates (26% calcite and 10% dolomite), 

and 52% other minerals (45% quartz, 1% potassium feldspar, 4% plagioclase feldspar, 

and 2% pyrite). Sample contains silt-sized quartz grains (40%), crinoid fragments (10%), 

sponge spicule fragments (5%), and undifferentiated microbioclastic debris. Oil-filled 

moldic and vug porosity observed.  
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2WN – 5274.60’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 

0.7%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.05%. XRD: Trace amounts of 

clays, 83% carbonates (83% calcite), and 17% other minerals (13% quartz, trace amounts 

of potassium feldspar, 3% plagioclase feldspar, trace amounts of pyrite, and 1% apatite). 

Sample contains crinoid fragments (40%), peloids (25%), silt-sized quartz grains (13%), 

and sponge spicules (5%). Oil filled moldic porosity observed.  
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2WN – 5270.50’ = Bioturbated wackestone. Porosity (visual estimation): 1.5%. Visual 

estimation: 10% clays, 40% carbonates, and 50% other minerals. Sample contains silt-

sized quartz grains (30%), peloids (20%), sponge spicules (7%), and undifferentiated 

microbioclastic debris. Oil-filled vug and moldic porosity observed.  

500 µm 
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2WN – 5268.60’ = Bioturbated wackestone to skeletal packstone. Sample is alizarin red 

stained. Porosity (NCS): 1.0%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.13%. XRD: 2% 

clays (2% illite), 77% carbonates (74% calcite and 3% dolomite), and 21% other minerals (17% 

quartz, 1% potassium feldspar, 3% plagioclase feldspar, and trace amounts of pyrite and 

apatite). Sample contains crinoid fragments and undifferentiated microbioclastic debris. 

Crinoidal 

Wackestone 
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2WN – 5263.90’ = Skeletal packstone. Sample is alizarin red stained. Porosity (NCS): 

2.9%. Permeability (Klinkenberg): 0.0003 mD. TOC: 0.23%. XRD: 3% clays (2% illite and 

1% mixed layer illite/smectite), 43% carbonates (39% calcite and 4% dolomite), and 54% 

other minerals (51% quartz, 1% potassium feldspar, 1% plagioclase feldspar, 1% pyrite, 

and trace amounts of apatite). Sample contains abundant sponge spicules (35%), silt-

sized quartz grains (10%), crinoid fragments, and undifferentiated microbioclastic 

debris. Oil-filled vug porosity observed. 
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2WN – 5262.30’ = Bioturbated wackestone.  Sample is blue epoxy impregnated. Porosity (visual 

estimation): 2.0%. Visual estimation: 15% clays, 35% carbonates, and 50% other minerals. 

Sample contains silt-sized quartz grains (20%), sponge spicules (10%), and undifferentiated 

microbioclastic debris. Open and oil-filled moldic porosity observed.  

2 mm 

500 µm 
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2WN – 5260.10’ = Skeletal packstone-grainstone. Sample is alizarin red stained. 

Porosity (NCS): 5.4%. Permeability (Klinkenberg): 0.001 mD. TOC: 0.57%. XRD: 3% clays 

(2% illite and 1% mixed layer illite/smectite), 71% carbonates (61% calcite and 10% 

dolomite), and 26% other minerals (22% quartz, 1% potassium feldspar, 3% plagioclase 

feldspar, and trace amounts of pyrite and apatite). Sample contains abundant sponge 

spicules (20%), crinoid fragments (15%), silt-sized quartz grains (12%), and 

undifferentiated skeletal debris. Oil-filled moldic and vug porosity observed.  
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2WN – 5258.50’ = Bioturbated wackestone to peloidal grainstone. Sample is alizarin red 

stained. Porosity (NCS): 2.2%. Permeability (Klinkenberg): 0.0004 mD. TOC: 0.15%. XRD: 1% clays 

(1% illite), 84% carbonates (80% calcite and 4% dolomite), and 15% other minerals (12% quartz, 

trace amounts of potassium feldspar, 3% plagioclase feldspar, and trace amounts of pyrite and 

apatite). Sample contains peloids (5%), silt-sized quartz grains (10%), brachiopod fragments 

(5%), and sponge spicules (2%). Oil-filled vug porosity observed. 

Crinoidal 

Wackestone 
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2WN – 5253.80-5254.00’ = Bioturbated mudstone-wackestone. Sample is alizarin red stained. 

TOC: 0.39%. XRD: 17% clays (12% illite and 5% mixed layer illite/smectite), 30% carbonates (22% 

calcite and 8% dolomite), and 53% other minerals (43% quartz, 1% potassium feldspar, 5% 

plagioclase feldspar, 3% pyrite, and 1% marcasite). Sample contains silt-sized quartz grains (40%) 

and undifferentiated microbioclastic debris. Oil-filled moldic and vug porosity observed. 
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2WN – 5249.75’ = Bioturbated wackestone. Sample is alizarin red stained. Porosity 

(NCS): 1.6%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.63%. XRD: 9% clays (1% 

chlorite, 5% illite, and 3% mixed layer illite/smectite), 32% carbonates (30% calcite and 

2% dolomite), and 59% other minerals (20% quartz, 2% potassium feldspar, 5% 

plagioclase feldspar, 2% pyrite, and trace amounts of apatite). Sample contains silt-sized 

quartz grains (20%), crinoid fragments (15%), brachiopod fragments (5%), and 

undifferentiated microbioclastic debris. Oil-filled moldic and vug porosity observed.  
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2WN – 5243.00’ = Peloidal packstone. Sample is blue epoxy impregnated. Porosity 

(visual estimation): 1.0%. Visual estimation: 2% clays, 73% carbonates (70% calcite and 

3% dolomite), and 25% other minerals. Sample contains peloids, silt-sized quartz grains, 

and sponge spicules. Oil-filled vug and intracrystalline porosity observed. 

500 µm 
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2WN – 5239.30’ = Skeletal grainstone. Sample is alizarin red stained and blue epoxy 

impregnated. Porosity (NCS): 1.6%. Permeability (Klinkenberg): <0.0001 mD. TOC: 

0.18%. XRD: 1% clays (1% illite), 45% carbonates (42% calcite and 3% dolomite), and 

54% other minerals (50% quartz, 1% potassium feldspar, 1% plagioclase feldspar, 1% 

pyrite, and 1% apatite). Sample is characterized by varying mineralogies and varying 

amounts of crinoid (10-40%), spicule (10-40%), and brachiopod (1-5%) fragments 

depending on location.  

Crinoidal, carbonate-rich 

Spiculitic, silica-rich 
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2WN – 5238.65’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 

0.8%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.05%. XRD: 1% clays (1% illite), 

73% carbonates (73% calcite), and 26% other minerals (22% quartz, 1% potassium 

feldspar, 3% plagioclase feldspar, and trace amounts of pyrite and apatite). Sample 

contains peloids (20%), sponge spicules (20%), crinoid fragments (15%), silt-sized quartz 

fragments (10%), and brachiopod fragments (3%). 
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2WN – 5234.60’ = Bioturbated wackestone-packstone. Sample is alizarin red stained. 

Porosity (NCS): 3.3%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.19%. XRD: 3% 

clays (2% illite and 1% mixed layer illite/smectite), 48% carbonates (46% calcite and 2% 

dolomite), and 49% other minerals (43% quartz, 1% potassium feldspar, 3% plagioclase 

feldspar, 1% pyrite, and 1% apatite). Sample contains silt-sized quartz grains (25%), 

crinoid fragments (20%), brachiopod fragments (5%), sponge spicule fragments, and 

undifferentiated microbioclastic debris. Oil-filled moldic and vug porosity observed. 
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2WN – 5233.90’ = Peloidal grainstone. Sample is blue epoxy impregnated. Porosity 

(visual estimation): 0.5%. Visual estimation: Trace amounts of clays, 85% carbonates, 

and 15% other minerals. Sample contains peloids (30%), silt-sized quartz grains (15%), 

and undifferentiated microbioclastic debris. 

2 mm 

500 µm 
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2WN – 5232.90’ = Crinoidal packstone. Sample is alizarin red stained. Porosity (NCS): 

2.6%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.18%. XRD: 3% clays (2% illite and 

1% mixed layer illite/smectite), 38% carbonates (35% calcite and 3% dolomite), and 59% 

other minerals (51% quartz, 2% potassium feldspar, 4% plagioclase feldspar, 1% pyrite, 

and 1% apatite). Sample contains silt-sized quartz grains (40%), crinoid fragments (25%), 

sponge spicule fragments (10%), and bryozoans (3%). Oil-filled vug porosity observed. 
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2WN – 5229.75’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 

0.9%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.03%. XRD: 1% clays (1% illite), 

79% carbonates (77% calcite and 2% dolomite), and 20% other minerals (17% quartz, 1% 

potassium feldspar, 2% plagioclase feldspar, and trace amounts of pyrite and apatite). 

Sample contains peloids (30%), crinoid fragments (30%), sponge spicules (15%), and silt-

sized quartz grains (15%). Minor amounts of oil-filled vug porosity observed.  
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2WN – 5229.35’ = Crinoidal grainstone. Sample is alizarin red stained. Porosity (NCS): 

2.2%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.13%. XRD: 2% clays (2% illite), 

55% carbonates (52% calcite and 3% dolomite), and 43% other minerals (40% quartz, 1% 

potassium feldspar, 2% plagioclase feldspar, and trace amounts of pyrite and apatite). 

Sample contains silt-sized quartz grains (40%), crinoid fragments (20%), peloids (20%), 

spicule fragments (15%), and brachiopod fragments (5%). Oil-filled moldic and vug 

porosity observed.  
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2WN – 5225.50’ = Peloidal grainstone. Sample is alizarin red stained. Porosity 

(ambient): 1.7%. Permeability (Klinkenberg): Sample was unsuitable for this type of 

measurement. TOC: 0.07%. XRD: 1% clays (1% illite), 78% carbonates (76% calcite and 

2% dolomite), and 21% other minerals (17% quartz, 1% potassium feldspar, 3% 

plagioclase feldspar, and trace amounts of pyrite and apatite). Sample contains crinoid 

fragments (40%), peloids (15%), sponge spicule fragments (10%), silt-sized quartz grains 

(15%), and undifferentiated microbioclastic debris. Oil-filled moldic porosity observed. 
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2WN – 5222.85’ = Bioturbated crinoidal packstone. Sample is alizarin red stained. 

Porosity (NCS): 2.6%. Permeability (Klinkenberg): 0.0005 mD. TOC: 0.11%. XRD: 2% clays 

(2% illite), 40% carbonates (37% calcite and 3% dolomite), and 58% other minerals (53% 

quartz, 1% potassium feldspar, 3% plagioclase feldspar, and 1% pyrite). Sample contains 

silt-sized quartz grains (50%) and crinoidal debris (30%). Oil-filled moldic and vug 

porosity observed. 
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2WN – 5219.75’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 

0.7%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.07%. XRD: 1% clays (1% illite), 

75% carbonates (74% calcite and 1% dolomite), and 24% other minerals (21% quartz, 1% 

potassium feldspar, 2% plagioclase feldspar, and trace amounts of pyrite and apatite). 

Sample contains crinoidal debris (40%), peloids (30%), silt-sized quartz grains (20%), and 

sponge spicules (15%). 
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2WN – 5212.55-5215.75’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (visual 

estimations): 0.5%. TOC: 0.09%. XRD: Trace amounts of clays, 74% carbonates (63% calcite and 1% 

dolomite), and 26% other minerals (22% quartz, 1% potassium feldspar, 3% plagioclase feldspar, and trace 

amounts of pyrite and apatite). Sample contains peloids (20%), crinoidal debris (30%), silt-sized quartz 

grains (22%), sponge spicules (10%), and undifferentiated microbioclastic debris. Minor amounts of oil-

filled vug porosity observed.  
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2WN – 5207.50’ = Peloidal-skeletal grainstone. Sample is blue epoxy impregnated. Porosity 

(visual estimation): 1.5%. Visual estimation: 2% clays, 70% carbonates, 28% other minerals. 

Sample contains peloids (15%), sponge spicules (10%), very coarse sand-sized pyrite grains (2%), 

and undifferentiated microbioclastic debris. Minor amounts of oil-filled vug porosity is observed. 

2 mm 

500 µm 
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2WN – 5205.30’ = Peloidal-skeletal grainstone. Sample is blue epoxy impregnated. Porosity 

(visual estimation): 0.5%. Visual estimation: 5% clays, 60% carbonates, 35% other minerals. 

Sample contains silt-sized quartz grains (10%), sponge spicules (10%), peloids (5%), brachiopod 

fragments (3%), and undifferentiated microbioclastic debris. Fracture in sample shows good 

porosity and permeability and terminates into mud-rich, bioturbated interval.  

Grainstone 

Wackestone 

2 mm 

500 µm 
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2WN – 5199.80’ = Skeletal grainstone. Sample is alizarin red stained and porosity is 

shown in bright fuchsia. Porosity (NCS): 1.7%. Permeability (Klinkenberg): 0.0001 mD. 

TOC: 0.03%. XRD: 1% clays (1% illite), 51% carbonates (51% calcite), and 48% other 

minerals (47% quartz, 1% potassium feldspar, and trace amounts plagioclase feldspar, 

pyrite, and apatite). Sample contains abundant sponge spicules (40%), crinoid fragments 

(15%), and brachiopod fragments (5%). Some sponge spicules have been replaced with 

calcite. Moldic porosity from the dissolution of skeletal grains observed. 
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2WN – 5198.75’ = Skeletal grainstone. Sample is alizarin red stained and blue epoxy 

impregnated. Porosity (NCS): 1.7%. Permeability (Klinkenberg): <0.0001 mD. TOC: 

0.13%. XRD: Trace amounts of clays, 70% carbonates (69% calcite and 1% dolomite), and 

30% other minerals (27% quartz, 1% potassium feldspar, 1% plagioclase feldspar, trace 

amounts of pyrite, and 1% apatite). Sample contains abundant crinoid fragments (30%), 

brachiopod fragments (10%), sponge spicules (5%), and peloids (5%). Moldic porosity 

from the dissolution of sponge spicules observed. Intraparticle porosity observed within 

silicified portions.  

 



370 
 

 

2WN – 5190.10’ = Skeletal grainstone. Sample is alizarin red stained and porosity is shown in 

bright fuchsia. Porosity (NCS): 1.0%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.07%. XRD: 

1% clays (1% illite), 51% carbonates (51% calcite), and 48% other minerals (42% quartz, 2% 

potassium feldspar, 3% plagioclase feldspar, 1% pyrite, and trace amounts of apatite). Sample 

contains abundant sponge spicules (35%), crinoid fragments (15%), and brachiopod fragments 

(5%). Moldic porosity and intraparticle porosity observed. 

Crinoidal, carbonate-rich 

Spiculitic, silica-rich 
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2WN – 5187.90’ = Silicified skeletal grainstone. Sample is alizarin red stained and blue 

epoxy impregnated. Porosity (ambient): 1.5%. Permeability (Klinkenberg): Sample was 

unsuitable for this type of measurement. TOC: 0.22%. XRD: 1% clays (1% illite), 27% 

carbonates (26% calcite and 1% dolomite), and 72% other minerals (68% quartz, 1% 

potassium feldspar, trace amounts of plagioclase feldspar, 3% pyrite, and trace amounts 

of apatite). Sample contains abundant sponge spicules (50%), crinoid fragments (15%), 

brachiopod fragments (3%), and bryozoan fragments (3%). Moldic and vug porosity 

observed.  
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2WN – 5186.65’ = Skeletal grainstone. Sample is alizarin red stained. Porosity (NCS): 

0.1%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.04%. XRD: 1% clays (1% illite), 

47% carbonates (41% calcite and 6% dolomite), and 52% other minerals (50% quartz, 1% 

potassium feldspar, 1% plagioclase feldspar, and trace amounts of pyrite and apatite). 

Sample contains crinoid fragments (15%), brachiopod fragments (10%), sponge spicules 

(10%), peloids (10%), and silt-sized quartz grains (20%).   

Crinoidal 

Spiculitic 
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2WN – 5184.15’ = Skeletal packstone. Sample is alizarin red stained. Porosity (NCS): 

3.2%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.23%. XRD: 3% clays (2% illite and 

1% mixed layer illite/smectite), 28% carbonates (26% calcite and 2% dolomite), and 69% 

other minerals (66% quartz, 1% potassium feldspar, 2% plagioclase feldspar, and trace 

amounts of pyrite and apatite). Sample contains silt-sized quartz grains (40%), sponge 

spicules (20%), crinoid fragments (10%), and undifferentiated microbioclastic debris. Oil-

filled vug porosity is observed.  
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2WN – 5182.25’ = Skeletal packstone. Sample is alizarin red stained and blue epoxy 

impregnated. Porosity (NCS): 1.5%. Permeability (Klinkenberg): <0.0001 mD. TOC: 

0.08%. XRD: 2% clays (1% illite and 1% mixed layer illite/smectite), 63% carbonates (62% 

calcite and 1% dolomite), and 35% other minerals (31% quartz, 1% potassium feldspar, 

3% plagioclase feldspar, and trace amounts of pyrite and apatite). Sample contains 

sponge spicules (20%), crinoid fragments (15%), silt-sized quartz grains (10%), and 

undifferentiated microbioclastic debris. Some spicules have been replaced by calcite. 

Open and oil-filled vug porosity observed.  



375 
 

 

2WN – 5179.80’ = Skeletal grainstone. Sample is alizarin red stained. Porosity (NCS): 9.3%. 

Permeability (Klinkenberg): 0.083 mD. TOC: 0.46%. XRD: 1% clays (1% illite), 71% carbonates 

(62% calcite and 9% dolomite), and 28% other minerals (25% quartz, 1% potassium feldspar, 2% 

plagioclase feldspar, and trace amounts of pyrite and apatite). Sample contains crinoid 

fragments (20%), sponge spicules (10%), and peloids (7%). Calcite-filled fracture present. 

Abundant moldic and vug porosity observed. 
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2WN – 5179.15’ = Skeletal grainstone. Sample is alizarin red stained and blue epoxy 

impregnated. Porosity (NCS): 9.1%. Permeability (Klinkenberg): 0.075 mD. TOC: 0.43%. XRD: 1% 

clays (1% illite), 67% carbonates (57% calcite and 10% dolomite), and 32% other minerals (30% 

quartz, 1% potassium feldspar, 1% plagioclase feldspar, and trace amounts of pyrite and 

apatite). Sample contains crinoid fragments (15%), sponge spicules (15%), peloids (15%), silt-

sized quartz grains (10%), and ostracodes (3%). Moldic and vug porosity observed.  
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2WN – 5177.95’ = Skeletal grainstone. Sample is alizarin red stained. Porosity (NCS): 

2.9%. Permeability (Klinkenberg): 0.0001 mD. TOC: 0.08%. XRD: 1% clays (1% illite), 61% 

carbonates (54% calcite and 7% dolomite), and 38% other minerals (36% quartz, 1% 

potassium feldspar, 1% plagioclase feldspar, and trace amounts of pyrite and apatite). 

Sample contains crinoid grains (30%), sponge spicules (15%), peloids (10%), and 

brachiopod fragments (3%). Some spicules have been replaced by calcite. Moldic, vug, 

intracrystalline, and intraparticle porosity are observed. 
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2WN – 5177.90’ = Bioturbated wackestone-skeletal packstone. Sample is alizarin red 

stained. XRD: 4% clays (3% illite and 1% mixed layer illite/smectite), 40% carbonates 

(33% calcite and 7% dolomite), and 56% other minerals (50% quartz, 1% potassium 

feldspar, 3% plagioclase feldspar, 1% pyrite, and 1% apatite). Sample contains sponge 

spicules (15%), crinoid fragments (15%), and undifferentiated microbioclastic debris.  



379 
 

 

2WN – 5176.35’ = Peloidal-skeletal grainstone. Sample is alizarin red stained and blue epoxy 

impregnated. Porosity (NCS): 2.3%. Permeability (Klinkenberg): 0.0001 mD. TOC: 0.07%. XRD: 1% 

clays (1% illite), 82% carbonates (81% calcite and 1% dolomite), and 17% other minerals (13% quartz, 

1% potassium feldspar, 3% plagioclase feldspar, and trace amounts of pyrite and apatite). Sample 

contains crinoid fragments (20%), peloids (15%), sponge spicules (12%), and silt-sized quartz grains. 

Mineralized vertical fracture is present within sample. Open and oil-filled moldic and intracrystalline 

porosity is observed.  



380 
 

 

2WN – 5170.15’ = Bioturbated packstone. Sample is alizarin red stained. Porosity (NCS): 2.8%. 

Permeability (Klinkenberg): 0.0001 mD. TOC: 0.26%. XRD: 2% clays (1% illite and 1% mixed layer 

illite/smectite), 43% carbonates (38% calcite and 5% dolomite), and 55% other minerals (47% 

quartz, 2% potassium feldspar, 5% plagioclase feldspar, 1% pyrite, and trace amounts of 

apatite). Sample contains silt-sized quartz grains (47%), crinoid fragments (15%), and 

undifferentiated microbioclastic debris. A large skeletal fragment (possibly a large ostracode or a 

brachiopod) is observed in this sample. Oil-filled porosity observed throughout sample. 



381 
 

 

2WN – 5166.35-5166.55’ = Bioturbated mudstone-wackestone. Sample is alizarin red 

stained. TOC: 3.13%. XRD: 11% clays (7% illite and 4% mixed layer illite/smectite), 50% 

carbonates (45% calcite and 5% dolomite), and 39% other minerals (31% quartz, 1% 

potassium feldspar, 3% plagioclase feldspar, 3% pyrite, and 1% apatite). Sample contains 

silt-sized quartz grains (30%), crinoid fragments (15%), sponge spicules (5%), and 

undifferentiated microbioclastic debris.  



382 
 

 

2WN – 5161.70’ = Bioturbated mudstone-wackestone. Sample is alizarin red stained. 

Porosity (ambient): 2.5%. Permeability (Klinkenberg): Sample was unsuitable for this 

type of measurement. TOC: 1.29%. XRD: 9% clays (6% illite and 3% mixed layer 

illite/smectite), 54% carbonates (45% calcite and 9% dolomite), and 37% other minerals 

(32% quartz, 1% potassium feldspar, 2% plagioclase feldspar, 1% pyrite, and 1% apatite). 

Sample contains silt-sized quartz grains (30%), sponge spicules (5%), crinoid fragments 

(5%), and undifferentiated microbioclastic debris. Some spicules are replaced with 

calcite. 
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2WN – 5159.85’ = Bioturbated wackestone-skeletal packstone.  Sample is alizarin red stained. 

Porosity (NCS): 3.0%. Permeability (Klinkenberg): 0.0006 mD. TOC: 0.57%. XRD: 9% clays (1% 

chlorite, 6% illite, and 2% mixed layer illite/smectite), 21% carbonates (19% calcite and 2% 

dolomite), and 70% other minerals (48% quartz, 1% potassium feldspar, 7% plagioclase feldspar, 

1% pyrite, and 13% apatite). Sample contains crinoid grains (20%), brachiopod fragments (5%), 

sponge spicule fragments (2%), and undifferentiated microbioclastic debris. Oil-filled vug 

porosity observed.  



384 
 

 

2WN – 5158.70-5158.90’ = Weakly calcareous bioturbated mudstone-wackestone. 

Sample is alizarin red stained. TOC: 0.79%. XRD: 33% clays (24% illite and 9% mixed layer 

illite/smectite), 11% carbonates (10% calcite and 1% dolomite), and 56% other minerals 

(45% quartz, 2% potassium feldspar, 5% plagioclase feldspar, 4% pyrite, and trace 

amounts of apatite). Sample contains silt-sized quartz grains (45%), sponge spicules 

(5%), and undifferentiated microbioclastic debris.  



385 
 

 

2WN – 5157.25’ = Bioturbated wackestone. Sample is alizarin red stained. Porosity (ambient): 

4.6%. Permeability (Klinkenberg): Sample was unsuitable for this type of measurement. TOC: 

1.91%. XRD: 17% clays (11% illite and 6% mixed layer illite/smectite), 36% carbonates (31% 

calcite and 5% dolomite), and 47% other minerals (36% quartz, 1% potassium feldspar, 5% 

plagioclase feldspar, 2% pyrite, and 3% apatite). Sample contains conodont fragments (15%), 

brachiopod fragments (10%), sponge spicules (5%), and undifferentiated microbioclastic debris.  
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2WN – 5155.65’ = Bioturbated wackestone. Sample is alizarin red stained. Porosity (ambient): 

2.2%. Permeability (Klinkenberg): Sample was not suitable for this type of analysis. TOC: 2.49%. 

XRD: 12% clays (8% illite and 4% mixed layer illite/smectite), 42% carbonates (38% calcite and 

4% dolomite), and 46% other minerals (30% quartz, 1% potassium feldspar, 6% plagioclase 

feldspar, 3% pyrite, and 6% apatite). Sample contains large skeletal fragments (3%), silt-sized 

quartz grains (30%), and undifferentiated microbioclastic debris.  
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2WN – 5153.80-5154.00’ = Laminated mudstone-wackestone. Sample is alizarin red 

stained. TOC: 1.82%. XRD: 20% clays (1% chlorite, 15% illite, and 4% mixed layer 

illite/smectite), 27% carbonates (25% calcite and 2% dolomite), and 53% other minerals 

(45% quartz, 1% potassium feldspar, 4% plagioclase feldspar, 2% pyrite, trace amounts 

of apatite, and 1% marcasite). Sample contains silt-sized quartz grains and 

undifferentiated microbioclastic debris.  
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2WN – 5152.90’ = Calcareous mudstone-wackestone. Sample is alizarin red stained. 

Porosity (NCS): 1.8%. Permeability (Klinkenberg): 0.191 mD. TOC: 1.61%. XRD: 13% clays 

(10% illite and 3% mixed layer illite/smectite), 43% carbonates (41% calcite and 2% 

dolomite), and 44% other minerals (34% quartz, trace amounts of potassium feldspar, 

5% plagioclase feldspar, 2% pyrite, and 3% apatite). Sample contains silt-sized quartz 

grains and undifferentiated microbioclastic debris.  



389 
 

 

2WN – 5149.80’ = Peloidal packstone. Sample is alizarin red stained. Porosity (NCS): 

2.1%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.38%. XRD: 2% clays (1% illite and 

1% mixed layer illite/smectite), 62% carbonates (59% calcite and 3% dolomite), and 36% 

other minerals (26% quartz, 2% potassium feldspar, 6% plagioclase feldspar, 1% pyrite, 

and 1% apatite). Sample contains crinoid fragments (30%), silt-sized quartz grains (26%), 

peloids (20%), and undifferentiated microbioclastic debris. Vug porosity observed. 
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2WN – 5148.40’ = Skeletal grainstone. Sample is alizarin red stained. Porosity (NCS): 

2.6%. Permeability (Klinkenberg): 0.0001 mD. TOC: 0.15%. XRD: 10% clays (8% illite and 

2% mixed layer illite/smectite), 35% carbonates (26% calcite and 9% dolomite), and 55% 

other minerals (46% quartz, 1% potassium feldspar, 5% plagioclase feldspar, 2% pyrite, 

and trace amounts of apatite). Sample contains crinoid fragments (23%), sponge 

spicules (15%), and brachiopod fragments (3%).  



391 
 

 

2WN – 5145.90’ = Bioturbated mudstone-wackestone. Sample is alizarin red stained. 

Porosity (NCS): 1.8%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.57%. XRD: 12% 

clays (9% illite and 3% mixed layer illite/smectite), 40% carbonates (23% calcite and 17% 

dolomite), and 48% other minerals (42% quartz, 1% potassium feldspar, 2% plagioclase 

feldspar, 2% pyrite, and 1% apatite). Sample contains silt-sized quartz grains, sponge 

spicules (2%), and undifferentiated microbioclastic debris.  
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2WN – 5144.75-5145.00’ = Calcareous mudstone-wackestone. Sample is alizarin red stained. 

TOC: 1.91%. XRD: 15% clays (1% chlorite, 11% illite, and 3% mixed layer illite/smectite), 31% 

carbonates (29% calcite and 2% dolomite), and 54% other minerals (44% quartz, 1% potassium 

feldspar, 4% plagioclase feldspar, 4% pyrite, and 1% apatite). Sample contains silt-sized quartz 

grains, sponge spicules (2%), crinoid fragments, and undifferentiated microbioclastic debris. 
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2WN – 5144.00-5144.20’ = Calcareous wackestone. Sample is alizarin red stained. TOC: 

1.98%. XRD: 23% clays (1% chlorite, 17% illite/mica and 5% mixed layer illite/smectite), 

18% carbonates (17% calcite and 1% dolomite), and 59% other minerals (47% quartz, 2% 

potassium feldspar, 5% plagioclase feldspar, 4% pyrite, and 1% apatite). Sample contains 

silt-sized quartz grains, sponge spicules (2%), and undifferentiated microbioclastic 

debris. 



394 
 

 

2WN – 5140.25’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 

1.6%. Permeability (Klinkenberg): 0.0001 mD. TOC: 0.08%. XRD: 2% clays (1% illite and 

1% mixed layer illite/smectite), 80% carbonates (78% calcite and 2% dolomite), and 18% 

other minerals (14% quartz, 1% potassium feldspar, 3% plagioclase feldspar, and trace 

amounts of pyrite and apatite). Sample contains crinoid fragments (15%), peloids (15%), 

sponge spicules (10%), and silt-sized quartz grains. Intraparticle, moldic, and minor 

amounts in intercrystalline porosity observed.  
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2WN – 5139.15’ = Skeletal-peloidal packstone. Sample is alizarin red stained. Porosity 

(ambient): 4.4%. Permeability (Klinkenberg): Sample was unsuitable for this type of 

measurement. TOC: 0.25%. XRD: 1% clays (1% mixed layer illite/smectite), 58% 

carbonates (55% calcite and 3% dolomite), and 41% other minerals (35% quartz, 1% 

potassium feldspar, 3% plagioclase feldspar, 1% pyrite, and 1% apatite). Sample contains 

silt-sized quartz grains (35%), crinoid fragments (20%), and undifferentiated 

microbioclastic debris. Oil-filled moldic and vug porosity observed.  



396 
 

   

2WN – 5138.35’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 

1.7%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.05%. XRD: Trace amounts of 

clays, 79% carbonates (78% calcite and 1% dolomite), and 21% other minerals (17% 

quartz, 1% potassium feldspar, 3% plagioclase feldspar, and trace amounts of pyrite and 

apatite). Sample contains silt-sized quartz grains (15%), peloids (15%), sponge spicules 

(10%), crinoid fragments (10%), brachiopod fragments (1%), and undifferentiated 

microbioclastic debris.  



397 
 

 

2WN – 5136.60’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 

0.7%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.05%. XRD: 1% clays (1% illite), 

81% carbonates (81% calcite), and 18% other minerals (14% quartz, 1% potassium 

feldspar, 3% plagioclase feldspar, and trace amounts of pyrite and apatite). Sample 

contains silt-sized quartz grains (15%), peloids (15%), sponge spicules (10%), crinoid 

fragments (10%), and undifferentiated microbioclastic debris.  
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2WN – 5134.25’ = Peloidal-skeletal packstone. Sample is alizarin red stained. Porosity 

(NCS): 1.2%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.09%. XRD: 2% clays (1% 

illite and 1% mixed layer illite/smectite), 58% carbonates (58% calcite), and 40% other 

minerals (34% quartz, 1% potassium feldspar, 4% plagioclase feldspar, trace amounts of 

pyrite, and 1% apatite). Sample contains silt-sized quartz grains (34%), crinoid fragments 

(15%), brachiopod fragments (10%), and undifferentiated microbioclastic debris.   



399 
 

 

2WN – 5133.60-5133.80’ = Calcareous wackestone. Sample is alizarin red stained. TOC: 

2.05%. XRD: 34% clays (1% chlorite, 1% kaolinite, 27% illite, and 5% mixed layer 

illite/smectite), 7% carbonates (7% calcite), and 59% other minerals (48% quartz, 2% 

potassium feldspar, 3% plagioclase feldspar, 3% pyrite, 2% apatite, and 1% marcasite). 

Sample contains silt-sized quartz grains (40%), sponge spicules (5%), and 

undifferentiated microbioclastic debris.  
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2WN – 5132.75’ = Skeletal grainstone. Sample is alizarin red stained. Porosity (NCS): 

2.8%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.06%. XRD: 8% clays (7% illite and 

1% mixed layer illite/smectite), 30% carbonates (30% calcite), and 62% other minerals 

(53% quartz, 1% potassium feldspar, 5% plagioclase feldspar, trace amounts of pyrite, 

and 3% apatite). Sample contains silt-sized quartz grains (50%), crinoid fragments (35%), 

and lesser amounts of sponge spicules and brachiopod fragments. Ptygmatic fracture is 

filled with blocky calcite cement.  

Siliceous 

Calcareous 
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2WN – 5132.25’ = Skeletal grainstone. Sample is alizarin red stained and blue epoxy 

impregnated. Porosity (NCS): 2.7%. Permeability (Klinkenberg): <0.0001 mD. TOC: 

0.19%. XRD: 1% clays (1% illite), 39% carbonates (39% calcite), and 60% other minerals 

(58% quartz, 1% potassium feldspar, 1% plagioclase feldspar, and trace amounts of 

pyrite and apatite). Sample contains crinoid fragments (30%), sponge spicules (15%), 

and peloids (10%). Oil-filled vug porosity and intracrystalline porosity observed.  



402 
 

 

2WN – 5131.75’ = Peloidal-skeletal grainstone. Sample is alizarin red stained. Porosity 

(NCS): 1.6%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.04%. XRD: 1% clays (1% 

illite), 78% carbonates (78% calcite), and 21% other minerals (17% quartz, 1% potassium 

feldspar, 2% plagioclase feldspar, 1% pyrite, and trace amounts of apatite). Sample 

contains crinoid fragments, sponge spicules (10-15%), peloids (15%), silt-sized quartz 

grains (10%), and brachiopod fragments (5%). 
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2WN – 5129.75’ = Peloidal-skeletal grainstone. Sample is alizarin red stained and blue 

epoxy impregnated. Porosity (NCS): 6.5%. Permeability (Klinkenberg): 0.0082 mD. TOC: 

0.23%. XRD: 2% clays (1% kaolinite and 1% illite), 52% carbonates (52% calcite), and 46% 

other minerals (43% quartz, 1% potassium feldspar, 2% plagioclase feldspar, and trace 

amounts of pyrite and apatite). Sample contains crinoid fragments (25%), silt-sized 

quartz grains (20%), and undifferentiated microbioclastic debris. Open and oil-filled 

moldic and vug porosity observed.  



404 
 

 

2WN – 5129.30’ = Spiculitic grainstone. Sample is alizarin red stained. Porosity (NCS): 0.8%. 

Permeability (Klinkenberg): <0.0001 mD. TOC: 0.06%. XRD: Trace amounts of clays, 48% 

carbonates (48% calcite), and 52% other minerals (50% quartz, 1% potassium feldspar, 1% 

plagioclase feldspar, and trace amounts of pyrite). Sample contains sponge spicules (50%) and 

crinoid fragments (25%). Minor amounts of moldic porosity observed.  



405 
 

 

2WN – 5127.35’ = Peloidal grainstone. Sample is alizarin red stained and blue epoxy 

impregnated. Porosity (ambient): 3.2%. Permeability (Klinkenberg): Sample was 

unsuitable for this type of measurement. TOC: 0.05%. XRD: 1% clays (1% illite), 79% 

carbonates (79% calcite), and 20% other minerals (17% quartz, 1% potassium feldspar, 

1% plagioclase feldspar, trace amounts of pyrite, and 1% apatite). Sample contains 

crinoid fragments, peloids (20%), and sponge spicules (10%). Moldic and vug porosity 

observed.  



406 
 

 

2WN – 5126.80’ = Skeletal-peloidal grainstone. Sample is alizarin red stained and blue 

epoxy impregnated. Porosity (NCS): 4.6%. Permeability (Klinkenberg): 0.0002 mD. TOC: 

0.16%. XRD: 3% clays (1% kaolinite and 2% illite), 54% carbonates (53% calcite and 1% 

siderite), and 43% other minerals (39% quartz, 1% potassium feldspar, 1% plagioclase 

feldspar, trace amounts of pyrite, and 2% apatite). Sample contains silt-sized quartz 

grains (39%), crinoid fragments (20%), and brachiopod fragments (15%). Moldic and vug 

porosity observed.  



407 
 

 

2WN – 5126.40’ = Skeletal-peloidal packstone. Sample is alizarin red stained and blue 

epoxy impregnated. Porosity (ambient): 5.9%. Permeability (Klinkenberg): Sample was 

unsuitable for this type of analysis. TOC: 0.27%. XRD: 4% clays (1% kaolinite and 3% 

illite), 42% carbonates (41% calcite and 1% dolomite), and 54% other minerals (48% 

quartz, 2% potassium feldspar, 2% plagioclase feldspar, trace amounts of pyrite, and 2% 

apatite). Sample contains silt-sized quartz grains (39%), crinoid fragments (20%), and 

brachiopod fragments (15%). Moldic and vug porosity observed. 
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2WN – 5124.55’ = Silicified skeletal grainstone. Sample is alizarin red stained and blue epoxy 

impregnated. Porosity (NCS): 4.6%. Permeability (Klinkenberg): <0.0001 mD. TOC: 0.06%. XRD: 

3% clays (1% kaolinite and 2% illite), trace amounts of carbonates, and 97% other minerals (93% 

quartz, 2% potassium feldspar, 1% plagioclase feldspar, trace amounts of pyrite, and 1% 

apatite). Sample contains silicified crinoid grains, brachiopod fragments, and sponge spicules. 

Micro-fractures within sample show porosity and permeability, and terminate into thin, mud-

rich interval. Fracture and moldic porosity is observed.  



409 
 

 

2WN – 5124.10’ = Siltstone. Sample is alizarin red stained and blue epoxy impregnated. Porosity 

(NCS): 9.5%. Permeability (Klinkenberg): 0.0037 mD. TOC: 0.33%. XRD: 7% clays (1% kaolinite 

and 6% illite), 1% carbonates (trace amounts of calcite and 1% siderite), and 92% other minerals 

(85% quartz, 2% potassium feldspar, 2% plagioclase feldspar, 1% pyrite, and 2% of apatite). 

Sample contains abundant quartz and detrital minerals.  



410 
 

 

2WN – 5123.70’ = Silicified skeletal grainstone. Sample is alizarin red stained and blue epoxy 

impregnated. Porosity (ambient): 3.0%. Permeability (Klinkenberg): Sample was unsuitable for 

this type of measurement. TOC: 0.18%. XRD: 4% clays (2% kaolinite and 2% illite), 6% carbonates 

(6% siderite), and 90% other minerals (87% quartz, 2% potassium feldspar, 1% plagioclase 

feldspar, and trace amounts of pyrite). Sample is composed of silicified skeletal fragments, 

dominantly sponge spicules (15%). Micro-fractures within sample show porosity and 

permeability. Moldic porosity is also observed within the sample.  
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2WN – 5123.20’ = Pennsylvanian shale-siltstone. Sample is alizarin red stained and blue epoxy 

impregnated. Porosity (ambient): 6.0%. Permeability (Klinkenberg): Sample was unsuitable for 

this type of measurement. TOC: 0.64%. XRD: 48% clays (13% chlorite, 7% kaolinite, 26% illite, 

and 2% mixed layer illite/smectite), 1% carbonates (trace amounts of calcite and 1% siderite), 

and 51% other minerals (35% quartz, 2% potassium feldspar, 14% plagioclase feldspar, trace 

amounts of pyrite and apatite). Sample contains thin, grainy, quartz-rich intervals.  



412 
 

Core #3 

Elinore #1-18 SWD 
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3EL – 4481.50’ = Glauconitic packstone. Sample is blue epoxy impregnated. Porosity (NCS): 

3.7%. Permeability (Klinkenberg): 0.947 mD. TOC: 0.81%. XRD: 6% clays (4% illite and 2% mixed 

layer illite/smectite), 80% carbonates (80% calcite), and 14% other minerals (8% quartz, 1% 

potassium feldspar, 3% plagioclase feldspar, and 2% pyrite). Sample contains fine to very fine 

sand-sized glauconite grains (15%), silt-sized quarts grains (8%), and scattered brachiopod (3%) 

and bone fragments (3%). Intracrystalline porosity observed. Oil present throughout sample.  

1 mm 

500 µm 
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3EL – 4480.50’ = Bioturbated wackestone to packstone. Sample is alizarin red stained. 

Porosity (NCS): 2.8%. Permeability (Klinkenberg): <0.0001 mD. XRD: 8% clays (5% illite 

and 3% mixed layer illite/smectite), 47% carbonates (28% calcite and 19% dolomite), 

and 45% other minerals (36% quartz, 2% potassium feldspar, 5% plagioclase feldspar, 

and 2% pyrite). Sample is composed of silt-sized quarts grains (36%), crinoid fragments 

(10%), brachiopod fragments (5%), spicule fragments (5%), and undifferentiated 

microbioclastic debris. Dominantly moldic and vug porosity filled with oil. 

500 µm 
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3EL – 4479.40’ = Glauconitic sandstone. Sample is alizarin red stained and blue epoxy impregnated. 

Porosity (NCS): 9.3%. Permeability (Klinkenberg): 0.0062 mD. XRD: 20% clays (11% illite and 9% mixed 

layer illite/smectite), 22% carbonates (13% calcite and 9% dolomite), and 58% other minerals (49% quartz, 

2% potassium feldspar, 3% plagioclase feldspar, 3% pyrite, and 1% apatite). Sample contains slit-sized 

quartz grains (49%), fine sand-sized glauconite grains (40%), coarse sand-sized phosphate nodules (5%), 

brachiopod fragments (3%), bone fragments (1%), and some spicule fragments. Intracrystalline porosity 

observed within dolomite crystals and lesser amounts of interparticle porosity observed between grains. 

Oil present throughout sample.  

Q 

1 mm 

200 µm 
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3EL – 4476.40’ = Bioturbated packstone. Sample is alizarin red stained. Porosity (NCS): 4.0%. 

Permeability (Klinkenberg): 0.0009 mD.  XRD: 8% clays (5% illite and 3% mixed layer 

illite/smectite), 54% carbonates (42% calcite and 12% dolomite), and 38% other minerals (29% 

quartz, 3% potassium feldspar, 4% plagioclase feldspar, 1% pyrite, and 1% apatite). Sample is 

composed of silt-sized quartz grains (29%), silt to fine sand-sized crinoid fragments (30%), and 

calcite replaced spicules (20%). Dominantly vug porosity with oil observed in pore spaces.  

Q 

1 mm 

200 µm 
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3EL – 4471.30’ = Bioturbated wackestone to packstone. Sample is alizarin red stained. Porosity (NCS): 

2.3%. Permeability (Klinkenberg): <0.0001 mD. XRD: 5% clays, 65% carbonates, and 30% other minerals. 

Sample contains silt-sized quartz grains (15%), peloids (20%), siliceous and calcareous spicules (10%), and 

crinoid fragments (20%). Dominantly vug porosity with oil observed in pore spaces. 

Q 

1 mm 

200 µm 
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3EL – 4470.50’ = Bioturbated wackestone to packstone. Sample is blue epoxy impregnated. Visual 

estimation: 15% clays, 40% carbonates, and 45% other minerals. Sample contains ostracode (5%), 

brachiopod (5%), spicule fragments (5%), and undifferentiated microbioclastic debris. Dominantly oil-filled 

porosity. 

1 mm 

500 µm 
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3EL – 4466.85’ = Partially silicified bioturbated packstone-grainstone. Sample is alizarin red stained. 

Porosity (NCS): 1.6%. Permeability (Klinkenberg): 0.0001 mD. Visual estimation: 5% clays, 30% carbonates, 

and 65% other minerals. Sample contains abundant sponge spicules (30%) and crinoid (15%) and 

ostracode (3%) fragments. Dominantly oil-filled moldic porosity from dissolution of sponge spicules and 

some interparticle porosity. 

1 mm 

500 µm 
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3EL – 4459.00’ = Bioturbated wackestone. Sample is blue epoxy impregnated. Porosity (visual 

estimation): 0.5%. Visual estimation: 15% clays, 35% carbonates, and 50% other minerals. Sample 

contains silt-sized quartz grains and undifferentiated microbioclastic debris. Dominantly oil-filled 

interparticle porosity. 

2 mm 

2 mm 
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3EL – 4446.55’ = Partially to completely silicified skeletal grainstone. Sample is alizarin 

red stained and porosity is shown in bright fuchsia. Porosity (NCS): 3.2%. Permeability 

(Klinkenberg): 0.023 mD.  XRD: 1% clays (1% illite), 58% carbonates (54% calcite and 4% 

dolomite), and 41% other minerals (40% quartz and 1% plagioclase feldspar). Sample is 

characterized by varying mineralogies and varying amounts of crinoid, spicule, and 

bryozoan fragments depending on location. Dominantly moldic and vug porosity, with 

some oil-filled pores.  

2 mm 500 µm 

500 µm 500 µm 
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3EL – 4441.25’ = Skeletal packstone-grainstone. Sample is alizarin red stained and porosity is 

shown in bright fuchsia. Porosity (NCS): 4.6%. Permeability (Klinkenberg): 0.013 mD. Visual 

estimation: 1% clays, 35% carbonates, 64% other minerals. Sample contains silt-sized quartz 

grains, brachiopod fragments (5%), spicules (20%), and crinoid fragments (10%). Dominantly 

moldic and vug porosity, with some oil-filled pores. 

1 mm 

200 µm 
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3EL – 4438.75’ = Silicified skeletal grainstone. Sample is alizarin red stained and porosity is 

shown in bright fuchsia. Porosity (NCS): 1.4%. Permeability (Klinkenberg): <0.0001 mD.  XRD: 

Trace amounts of clays, 29% carbonates (27% calcite and 2% dolomite), and 71% other minerals 

(66% quartz, 2% potassium feldspar, and 3% plagioclase feldspar). Sample contains abundant 

sponge spicules (40%) and lesser amounts of brachiopod (3%), bryozoan (5%), and crinoid (10%) 

fragments. A calcite-filled fracture is shown passing through the middle of the sample. 

Dominantly moldic and vug porosity. 

2 mm 

500 µm 
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3EL – 4429.10’ = Peloidal grainstone. Sample is alizarin red stained and porosity is 

shown in bright fuchsia. Porosity (NCS): 3.1%. Permeability (Klinkenberg): 0.001 mD.  

XRD: 1% clays (1% illite), 85% carbonates (84% calcite and 1% dolomite), and 14% other 

minerals (11% quartz, 1% potassium feldspar, and 2% plagioclase feldspar). Sample is 

composed of silt-sized quartz grains (11%), abundant peloids (20%), spicules (15%), and 

ostracodes (5%). Dominantly moldic porosity from dissolution of sponge spicules and 

vug and intercrystalline porosity. 

Q 

500 µm 
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3EL – 4426.20’ = Partially silicified skeletal grainstone. Sample is alizarin red stained 

and porosity is shown in bright fuchsia. Porosity (NCS): 1.0%. Permeability (Klinkenberg): 

<0.0001 mD. XRD: Trace amounts of clays, 49% carbonates (47% calcite and 2% 

dolomite), and 51% other minerals (48% quartz, 1% potassium feldspar, and 2% 

plagioclase feldspar). Sample contains crinoid (30%) and brachiopod (10%) fragments 

and sponge spicules (5%). Minor amounts of moldic porosity from the dissolution of 

sponge spicules.  

500 µm 
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3EL – 4410.55’ = Skeletal packstone-grainstone. Sample is alizarin red stained. Porosity 

(NCS): 5.3%. Permeability (Klinkenberg): 0.238 mD.  XRD: 1% clays (1% illite), 55% 

carbonates (53% calcite and 2% dolomite), and 44% other minerals (41% quartz, 1% 

potassium feldspar, and 2% plagioclase feldspar). Sample contains abundant sponge 

spicules and increased skeletal content in carbonate-rich intervals. Carbonate-lean 

intervals are dominated by silt-sized quartz grains. Thin, open ptygmatic fractures in this 

sample show good porosity and permeability. Dominantly moldic porosity from the 

dissolution of sponge spicules and fracture porosity.  

500 µm 

500 µm 2 mm 
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3EL – 4407.10’ = Silicified spiculitic grainstone Sample is alizarin red stained. Porosity (NCS): 

2.9%. Permeability (Klinkenberg): <0.0001 mD.  XRD: 1% clays (1% illite), 33% carbonates (33% 

calcite), and 66% other minerals (61% quartz, 2% potassium feldspar, 3% plagioclase feldspar, 

and trace amounts of pyrite). Sample is composed of abundant sponge spiclues (30%), crinoid 

fragments (15%), and minor occurrences of ostracode (3%) and brachiopod fragments (3%). 

Dominantly moldic porosity from the dissolution of sponge spicules. 

1 mm 

500 µm 
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3EL – 4406.65’ = Silicified spiculitic grainstone. Sample is alizarin red stained. Porosity (NCS): 

3.0%. Permeability (Klinkenberg): 0.0001 mD.  XRD: 1% clays (1% illite), 38% carbonates (37% 

calcite and 1% dolomite), and 61% other minerals (56% quartz, 2% potassium feldspar, 3% 

plagioclase feldspar, and trace amounts of pyrite and apatite). Sample is composed of abundant 

sponge spicules (40%), crinoid fragments (15%), ostracode fragments (7%), and minor 

occurrences of brachiopod fragments (3%). A calcite-filled burrow with silt-sized quartz grains is 

observed within the sample. Dominantly moldic and vug porosity observed within silicified 

portions of the sample. 

500 µm 

500 µm 2 mm 
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3EL – 4403.00’ = Bioturbated mudstone to wackestone. Porosity (visual estimation): 1.0%. 

Visual estimation: 5% clays, 55% carbonates, and 40% other minerals. Sample contains silt-sized 

quartz grains and undifferentiated microbioclastic debris. Dominantly oil-filled porosity. 

1 mm 

500 µm 
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3EL – 4395.00’ = Silicified skeletal grainstone. Sample is blue epoxy impregnated. Porosity (visual 

estimation): 6.0%. Visual estimation: 1% clays, 35% carbonates, 64% other minerals. Sample contains silt-

sized quartz grains, peloids (10%), spicules (15%), and undifferentiated microbioclastic debris. Dominantly 

moldic porosity from the dissolution of sponge spicules and lesser amounts of vug porosity. 

1 mm 

500 µm 
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3EL – 4393.50’ = Laminated mudstone-wackestone. Sample is blue epoxy impregnated. Visual 

estimations: 10% clays, 55% carbonates, and 35% other minerals. Sample contains silt-sized 

quartz grains (7%), mm-scale burrows (outlined in dashed yellow line), and brachiopod 

fragments (10%). Laminations are highlighted in yellow in top photomicrograph. 

1 mm 

500 µm 
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3EL – 4389.80’ = Laminated mudstone-wackestone. Sample is blue epoxy impregnated. Visual 

estimations: 10% clays, 55% carbonates, and 35% other minerals. Sample contains silt-sized 

quartz grains (10%) and brachiopod fragments (15%). 

1 mm 

500 µm 
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3EL – 4384.70’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 

1.7%. Permeability (Klinkenberg): <0.0001 mD. Visual estimations: Trace amounts of 

clays, 70% carbonates, and 30% other minerals. Sample contains peloids (25%), silt-sized 

quartz grains (30%), calcareous spicules (15%), and crinoid fragments (15%).  

 

500 µm 



434 
 

 

3EL – 4380.95’ = Silicified skeletal grainstone. Sample is alizarin red stained. Porosity 

(NCS): 3.7%. Visual estimation: 5% clays, 25% carbonates, and 70% other minerals. 

Sample contains abundant sponge spicules (40%) and undifferentiated microbioclastic 

debris likely composed of abundant crinoid fragments. Dominantly oil-filled moldic and 

vug porosity.  

500 µm 
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3EL – 4376.50’ = Peloidal grainstone. Sample is blue epoxy impregnated. Porosity: 2.0% 

(visual estimation). Visual estimation: 1% clays, 85% carbonates, and 14% other 

minerals. Sample is composed of silt-sized quartz grains (14%), abundant peloids (35%), 

and sponge spicules (5%). Dominantly moldic porosity from dissolution of sponge 

spicules and vug and interparticle porosity. 

500 µm 
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3EL – 4362.35’ = Peloidal grainstone. Sample is alizarin red stained. Porosity (NCS): 1.3%. Permeability 

(Klinkenberg): <0.0001 mD.  XRD: 1% clays (1% illite), 67% carbonates (66% calcite and 1% dolomite), and 

32% other minerals (26% quartz, 1% potassium feldspar, 4% plagioclase feldspar, 1% pyrite, and trace 

amounts of apatite). Sample is composed of silt-sized quartz grains (26%), crinoid fragments (25%), 

peloids (10%), and sponge spicules (5%). Dominantly oil-filled moldic and vug porosity. 

1 mm 

500 µm 
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3EL – 4354.30’ = Partially silicified skeletal grainstone. Sample is alizarin red stained. Porosity 

(NCS): 1.8%. Permeability (Klinkenberg): <0.0001 mD.  XRD: 1% clays (1% illite), 76% carbonates 

(75% calcite and 1% dolomite), and 23% other minerals (19% quartz, 1% potassium feldspar, 3% 

plagioclase feldspar, and trace amounts of pyrite). Sample is characterized by varying 

mineralogies and varying amounts of crinoid (10-70%) and sponge spicules (15-40%) depending 

on location. Dominantly moldic and vug porosity, with some oil-filled pores. 

500 µm 

500 µm 
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3EL – 4353.90’ = Skeletal grainstone. Sample is alizarin red stained. Porosity (NCS): 

8.9%. Permeability (Klinkenberg): 0.0074 mD.  XRD: 1% clays (1% illite), 33% carbonates 

(31% calcite and 2% dolomite), and 66% other minerals (61% quartz, 2% potassium 

feldspar, 2% plagioclase feldspar, and 1% pyrite). Sample contains abundant sponge 

spicules (40%), silt-sized quartz grains, and undifferentiated microbioclastic debris. 

Dominantly moldic porosity from the dissolution of sponge spicules and vug porosity, 

with lesser amounts of intercrystalline porosity within the fracture filling cements. 

500 µm 
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3EL – 4349.90’ = Skeletal grainstone. Sample is alizarin red stained. Porosity (NCS): 11.4%. 

Permeability (Klinkenberg): 0.023 mD.  XRD: 1% clays (1% illite), 29% carbonates (26% calcite 

and 3% dolomite), and 70% other minerals (65% quartz, 2% potassium feldspar, 3% plagioclase 

feldspar, and trace amounts of pyrite and apatite). Sample contains abundant spicules (40%) 

and silt-sized quartz grains (50%) as well as undifferentiated microbioclastic debris. Dominantly 

moldic and vug porosity.  

1 mm 

500 µm 
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3EL – 4345.50’ = Peloidal packstone-grainstone. Sample is blue epoxy impregnated. 

Porosity (visual estimation): 0.5% Visual estimation: 1% clays, 85% carbonates, and 14% 

other minerals. Sample is composed of silt-sized quartz grains (14%), abundant peloids 

(45%), and undifferentiated microbioclastic debris. Sample shows an example of good 

fracture porosity and permeability. Moldic porosity from the dissolution of skeletal 

grains is also observed.  

500 µm 
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3EL – 4341.90’ = Silicified peloidal-skeletal grainstone. Sample is alizarin red stained. Porosity (NCS): 

5.8%. Permeability (Klinkenberg): 0.0004 mD.  XRD: 1% clays (1% illite), 45% carbonates (45% calcite and 

trace amounts of dolomite), and 54% other minerals (51% quartz, 1% potassium feldspar, 2% plagioclase 

feldspar, and trace amounts of pyrite and apatite). Sample is composed of abundant silt- to sand-sized 

quartz grains (45%), spicules (7%), and undifferentiated microbioclastic debris. Dominantly moldic 

porosity from the dissolution of sponge spicules and minor amounts of intercrystalline porosity.  

500 µm 

200 µm 
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3EL – 4340.25’ = Peloidal grainstone. Sample is alizarin red stained and porosity is 

shown in bright fuchsia. Porosity: 2.2%. XRD: 1% clays (1% illite), 85% carbonates (85% 

calcite), and 14% other minerals (10% quartz, 1% potassium feldspar, 3% plagioclase 

feldspar, and trace amounts of pyrite). Sample is composed of sand- and silt-sized 

quartz grains (5%), peloids (15%), spicules (10%), and minor amounts of ostracode 

fragments and undifferentiated microbioclastic debris. Minor amounts of 

intracrystalline porosity observed. 

500 µm 
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3EL – 4338.50’ = Pennsylvanian wackestone. Sample is blue epoxy impregnated.  

 

  

1 mm 
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